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Preface

These notes were used to lecture a course at UHH for masters level students in the winter
semester of 2015, and again in the Summer Semester of 2018. A large part of the course material
was heavily based on the excellent set of lecture notes “The Probabilistic Method” by Matoušek
and Vondrák, which themselves follow the book of the same name by Alon and Spencer. The
latter cannot be recommended highly enough as an introductory text to the subject and covers
most of the material in these lectures (and much more) in depth.

There are a few reasons for writing yet another set of notes on the same subject. Firstly
there is simply the matter of length. German semesters are slightly longer than some other
university terms, and so the lecture course was to run for 26 lectures of 90 minutes each, which
would easily have exhausted the material in the previous notes with plenty of time to spare.
This extra time has allowed us to include more examples of applications of the method, such as
the beautiful result on the threshold for Hamiltonicity in Section 7, as well as chapters on wider
topics not usually covered in an introductory course.

Secondly the course was designed with graph theorists in mind, with examples chosen as much
as possible with an emphasis on graph theoretical problems. This was not always possible, and
indeed in some cases not always preferable as there are many beautiful and instructive examples
arising naturally from set systems or hypergraphs, but hopefully the result was that the students
were able to easily understand the statement of the results and motivations for them.

The material from Section 5 on the method of dependent random choice comes from the
survey paper “Dependent Random Choice” by Fox and Sudakov, which is a good introductory
text if you wish to know more about the technique. Similarly the material from Section 15
on pseudorandomness follows in part the survey paper “Pseudo-random graphs” by Krivelevich
and Sudakov. Section 11.3 comes from the paper “A stronger bound for the strong chromatic
index” by Bruhn and Joos and Section 14 follows in part a lecture of Alistair Sinclair.
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1 Preliminaries

1.1 Probability Theory

This section is intended as a short introduction to the very basics of probability theory, covering
only the basic facts about finite probability spaces that we will need to use in this course.

Definition. A probability space is a triple (Ω,Σ,P), where Ω is a set, Σ ⊆ 2Ω is a σ-algebra (A
non-empty collection of subsets of Ω which is closed under taking complements and countable
unions/intersections), and P is a measure on Σ with P(Ω) = 1. That means:

• P is non-negative;

• P(∅) = 0;

• For all countable collections of disjoint sets {Ai}ni=1 in Σ,

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P(Ai).

The elements of Σ are called events and the elements of Ω are called elementary events. For an
event A, P(A) is called the probability of A.

During this course we will mostly consider finite probability spaces, those where Ω is finite
and Σ = 2Ω. In this case the probability measure P is determined by the value it takes on
elementary events. That is, given any function p : Ω→ [0, 1] that satisfies

∑
ω∈Ω p(ω) = 1, then

the function on Σ given by P(A) =
∑

ω∈A p(ω) is a probability measure.

In a finite probability space, the most basic example of a probability measure is the uniform
distribution on Ω, where

P(A) =
|A|
|Ω|

for all A ⊆ Ω.

An important example of a probability space, which we will return to throughout the course, is
that of a random graph.

Definition. The probability space of random graphs G(n, p) is a finite probability space whose
elementary events are all graphs on a fixed set of n vertices, and where the probability of each
graph with m edges is

p(G) = pm(1− p)(
n
2)−m

This corresponds to the usual notion of picking a random graph by including every potential
edge independently with probability p. We will often denote an arbitary event from this space
by G(n, p). We note that p can, and often will be, a function of n.

Given a property of graphs P we say that G(n, p) satisfies P almost surely or with high
probability if

lim
n→∞

P(G(n, p) satisfies P ) = 1.

5



Another natural, and often utilized, probability space related to graphs is that of G(n,M)
where the elementary events are all graphs on n vertices with M edges, with the uniform
probability measure. G(n,M) is, except in certain cases, much less nice to work with than G(n, p).
We won’t work with this space in the course, and mention that, quite often in applications you
can avoid working with G(n,M) at all by proving the result you want in G(n, p) for an appropriate
p and using some standard theorems that translate results between the spaces.

One elementary fact that we will use often is the following, often referred to as the union
bound:

Lemma 1.1 (Union bound). For any A1, A2, . . . , An ∈ Σ,

P

(
n⋃
i=1

Ai

)
≤ Σn

i=1P(Ai)

Proof. For each 1 ≤ i ≤ n let us define

Bi = Ai \ (A1 ∪A2 ∪ . . . ∪Ai−1).

Then Bi ⊂ Ai, and so P(Bi) ≤ P(Ai), and also
⋃
Bi =

⋃
Ai. Therefore, since the events

B1, B2, . . . , Bn are disjoint, by the additivity of P

P

(
n⋃
i=1

Ai

)
= P

(
n⋃
i=1

Bi

)
= Σn

i=1P(Bi) ≤ Σn
i=1P(Ai)

Definition. Two events A,B ∈ Σ are independent if

P(A ∩B) = P(A)P(B).

More generally, a set of events {A1, A2, . . . , An} is mutually independent if, for any subset of
indices I ⊆ [n],

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai).

It is important to note that the notion of mutual independence is stronger than simply
having pairwise independence of all the pairs Ai, Aj . Intuitively, the property of independence
of two events, A and B, should mean that knowledge about whether or not A occurs should not
influence the likelihood of B occurring. This intuition is made formal with the idea of conditional
probability.

Definition. Given two events A,B ∈ Σ such that P(B) 6= 0, we define the conditional probability
of A, given that B occurs, as

P(A|B) =
P(A ∩B)

P(B)
.

Note that, as expected, A and B are independent if and only if P(A|B) = P(A).

Definition. A real random variable on probability space (Ω,Σ,P) is a function X : Ω→ R that
is P-measurable. (That is, for any a ∈ R, {ω ∈ Ω : X(ω) ≤ a} ∈ Σ.)
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For the most part all the random variables we consider will be real valued, so for convenience
throughout the course we will suppress the prefix ”real”. However we will in some contexts later
in the course consider random variables which are functions from Ω to more general spaces.

In the case of a finite probability space, any function X : Ω → R will define a random
variable. Given a measurable set A ⊆ R the probability that the value X takes lies in A is
P({ω ∈ Ω : X(ω) ∈ A}) which we will write as P(X ∈ A).

Definition. The expectation of a random variable X is

E(X) =

∫
Ω
X(ω) dP(ω).

In the case of a finite probability space this can be expressed more clearly as

E(X) =
∑
ω∈Ω

p(ω)X(ω).

The set of random variables forms an algebra over R with addition and multiplication defined
pointwise. For example the random variable X + Y is the function from Ω to R defined by
(X + Y )(ω) = X(ω) + Y (ω).

Lemma 1.2 (Linearity of expectation). For any two random variables X and Y

E(X + Y ) = E(X) + E(Y ).

Proof.

E(X + Y ) =

∫
Ω

(X + Y )(ω) dP(ω) =

∫
Ω
X(ω) + Y (ω) dP(ω)

=

∫
Ω
X(ω) dP(ω) +

∫
Ω
Y (ω) dP(ω) = E(X) + E(Y ).

So expectation is linear, however in general it is not multiplicative. Indeed E(XY ) can be
quite different to E(X)E(Y ), however if the two random variable are independent the two will
coincide.

Definition. Two random variables X,Y are independent if, for any two measurable sets A,B ⊆
R we have

P(X ∈ A and Y ∈ B) = P(X ∈ A)P(Y ∈ B).

More generally, a set of random variables {X1, X2, . . . , Xn} is mutually independent if, for
any subset of indices I ⊆ [n] and any set of measurable sets {Ai ⊆ R : i ∈ I} we have

P (Xi ∈ Ai for all i ∈ I) =
∏
i∈I

P(Xi ∈ Ai).

Lemma 1.3. For any two independent random variables, X and Y ,

E(XY ) = E(X)E(Y )
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Proof. We will just go through the case where X and Y are random variables on a finite prob-
ability space. Let VX and VY be the set of values attained by X and Y respectively. Given any
a ∈ VX and b ∈ VY we have by independence that P(X = a and Y = b) = P(X = a)P(Y = b).
So

E(XY ) =
∑

a∈VX ,b∈VY

ab.P(X = a and Y = b)

=
∑

a∈VX ,b∈VY

ab.P(X = a)P(Y = b)

=

∑
a∈VX

a.P(X = a)

∑
b∈VY

b.P(Y = b)

 = E(X)E(Y ).

For general probability spaces the proof is idea is the same, but is formally a little more com-
plicated.

1.2 Useful Estimates

Many proofs using the probabilistic method will reduce to calculating certain probabilities, for
example showing they are less than 1 or tend to 0. For this purpose we will often need to
estimate some quite complicated combinatorial expressions. In this section we will note down
some useful estimates to apply later, both weak and strong.

Firstly the factorial function n!. We can bound this above weakly as n! ≤ nn. A more careful
estimate of (n

e

)n
≤ n! ≤ en

(n
e

)n
can be proved by induction. Stirlings formula, n! ∼

√
2πn

(
n
e

)n
, is more precise, but we won’t

need to use it’s full strength.

For the binomial co-efficient
(
n
k

)
we have a weak upper bound of

(
n
k

)
≤ nk (or if we’re being

even more imprecise
(
n
k

)
≤ 2n). A more careful estimation gives(n

k

)k
≤
(
n

k

)
≤
(en
k

)k
.

Sometimes it will be necessary to bound more precisely the middle binomial co-efficient and for
this purpose we have

22m

2
√
m
≤
(

2m

m

)
≤ 22m

√
2m

Finally for bounding expressions of the type (1 − p)m with p > 0 small we use the inequality
1 + x ≤ ex, valid for all real x, which give us

(1− p)m ≤ e−mp.

For bounding such expressions from below, which is usually more delicate, we often use

1− p ≥ e−2p,

which holds for all 0 ≤ p ≤ 1
2 .
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We will also use throughout the notes the following notation for comparing growth rates of
functions, which it will be useful to be familiar with. Given two functions f, g : N → R we say
that:

• f = O(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≤ Cg(n);

• f = Ω(g) if there exists C > 0 such that for all sufficiently large n, f(n) ≥ Cg(n);

• f = o(g) if for sufficiently large n, f(n) ≤ Cg(n), for any fixed C > 0;

• f = ω(g) if for sufficiently large n, f(n) ≥ Cg(n), for any fixed C > 0;

9



2 The Probabilistic Method

In its most basic form the probabilistic method can be described as follows: In order to prove
the existence of a combinatorial object with certain properties we pick a random object from a
suitable probability space and calculate the probability that it satisfies these conditions. If we
can prove that this probability is strictly positive, then we conclude that such an object must
exist, since if none of the objects satisfied the conditions, the probability of a random object
doing so would be zero.

The probabilistic method is useful in cases when an explicit construction of such an object
does not seem feasible, and when we’re more interested in the existence of such an object than
in a specific example. We will start by giving some examples of the method in this form.

2.1 Ramsey Numbers

Definition. Given a graph G a clique is a set of vertices inducing a complete subgraph and an
independent set is a set of vertices inducing a subgraph containing no edges. The clique number,
ω(G), is the size of the largest clique in G and the independence number, α(G), is the size of the
largest independent set.

Theorem 2.1 (Ramsey’s Theorem). For any k, l there exists an n such that every |G| ≥ n
either has ω(G) ≥ k or α(G) ≥ l.

We define the Ramsey number, R(k, l), to be the smallest such n, that is

R(k, l) := min{n : any graph on n vertices contains a clique

of size k or an independent set of size l}.

Theorem 2.1 asserts that such a number exists. However the precise values of R(k, l) are not
known beyond a small number of cases, and it is an active area of research to provide good
bounds for such numbers. An early use of the probabilistic method was the prove a lower bound
on the diagonal Ramsey numbers R(k, k).

Theorem 2.2. For any k ≥ 3
R(k, k) > 2k/2−1

Proof. We consider a random graph G(n, 1/2), so that every pair of vertices forms an edge
with probability 1

2 , independently of the other edges. We want to calculate the probability that
this graph contains no clique or independent set of size k. Given any fixed set of k vertices,
A ⊂ V (G), we have

P(A is a clique) = 2−(k2),

since for this to be the case each of the
(
k
2

)
possible edges must have been chosen, and the same

holds for the probability that A is an independent set. This holds for every such A ⊂ V , of
which there are

(
n
k

)
, and so we can use the union bound to say that

P(G(n, 1/2) contains a clique or independent set of size k) ≤ 2

(
n

k

)
2−(k2).
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If this probability is less than 1 then

P(G(n,
1

2
) doesn’t contain a clique or independent set of size k)

= 1− P(G(n,
1

2
) contains a clique or independent set of size ) > 0,

and so there exists at least one graph in the probability space G(n, 1/2), which contains neither
a clique, nor an independent set of size k.

It remains to choose n such that the expression 2
(
n
k

)
2−(k2) < 1. Using the simple estimate that(

n
k

)
≤ nk we see that it is sufficient to choose n such that 2nk < 2k(k−1)/2, which is certainly true

if n ≤ 2k/2−1. Therefore there is a graph on 2k/2−1 vertices (ignoring floor signs for convenience)
with neither a clique nor an independent set of size k, and hence R(k, k) > 2k/2−1.

Clearly in the last step we were slightly careless with our estimates, and in fact if we had
been more careful we could improve this lower bound to 2k/2, however this is in some sense
close to the best possible bound known today. In particular no lower bound of the form ck for
c >
√

2 is known, although, by comparison, the best known upper bound is around 4k. Note
that, whilst this proof tells us that there is a graph on 2k/2−1 vertices which contains no clique
or independent set of size k, the proof is not constructive. The best known explicit constructions
of graphs with no large clique or independent set give much worse bounds.

In some sense the use of a probability space here is a little forced, what is really happening in
the proof is we are estimating the number of graphs on n vertices which contain either a clique
or independent set of size k, and comparing this to the total number of graphs on n vertices.
Showing the probability is strictly positive is equivalent to showing the first number is smaller
than the second.

However, not only is the probabilistic formulation often simpler than the counting arguments,
phrasing such arguments in this framework allows us to use many results from probability theory,
which it would be impossible to replace with direct counting arguments (or at the very least,
much more difficult).

2.2 Set Systems

Definition. A family F of sets is intersecting if for all A,B ∈ F , A ∩B 6= ∅

For a given n, how large can an intersecting family contained in 2[n] be? One can note that
if A and B are large enough then they must intersect, in particular if both |A| and |B| > n/2.
So for example when n is odd we can construct an intersecting family of size 2n−1, exactly half
of the possible sets, by taking all the subsets of size > n/2. In the case where n is even the
same can be achieved if we take a bit more care with the sets of size exactly n/2. Note that the
only way A,B ∈ [n](n/2) can fail to intersect is if A = Bc. Therefore we can form an intersecting
family by arbitrarily picking one of each pair A,Ac ∈ [n](n/2) together with all sets of larger size.
Finally we can see that 2n−1 is best possible, since for any pair A,Ac ∈ 2[n] we can only ever
pick at most one to be in our family.
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The Erdős-Ko-Rado Theorem considers how large an intersecting family can be if we restrict
to sets of fixed sizes, that is, given n and k, what is the size of the largest intersecting family
F ⊂ [n](k)?

We note first that if k ≥ n/2 by the previous comments the question is not interesting. Also
we note that there is a natural way to construct a family of sets which is intersecting, simply
fix some I ⊂ [n] and consider the family FI = {A ∈ [n](k) : I ⊆ A}. The size of this family is(n−|I|
k−|I|

)
, and so the largest such family is when I is just a single element. The conclusion of the

Erdős-Ko-Rado Theorem is that this is best possible.

Theorem 2.3 (The Erdős-Ko-Rado Theorem). For any n and k < n/2, if F ⊂ [n](k) is an
intersecting family, then

|F| ≤
(
n− 1

k − 1

)

Proof. The following probabilistic proof is due to Katona. Suppose we pick a set A uniformly
at random from [n](k) then clearly the probability of picking a member of our family F is

P(A ∈ F) =
|F|(
n
k

) .
Let us estimate this probability in a different way. Suppose instead of picking A uniformly at
random we first pick a random permutation σ ∈ Sn, and then pick a number i ∈ [n] uniformly
at random. We can associate with the pair (σ, i) a set

A(σ, i) = {σ(i), σ(i+ 1), . . . , σ(i+ (k − 1))} ∈ [n](k),

where addition is performed modulo n. It is simple to check that picking A = A(σ, i) by picking
both σ and i uniformly at random is equivalent to picking A uniformly at random from [n](k).
However, we note that, for a fixed choice of σ, at most k of the sets {A(σ, i) : i ∈ [n]} are in F .

Indeed, suppose A(σ, i) ∈ F . The only A(σ, j) which intersect A(σ, i) are those such that
j = i+t for 1 ≤ |t| ≤ k−1. There are 2(k−1) such sets, but for any pair {A(σ, i+t), A(σ, i+t−k)}
at most one of the sets can be in F , since they are disjoint. Therefore at most k are in F .

Since this holds for each σ we see that, when we pick A in this manner,

P(A ∈ F) ≤ k

n

Combining these two inequalities we see that

|F| = P(A ∈ F)

(
n

k

)
≤ k

n

(
n

k

)
=

(
n− 1

k − 1

)

This may seem a different idea to the preceding proof. Rather than picking an object at
random and estimating the probability that it satisfies certain properties we have started with
an unknown object (in this case an intersecting family), and estimated the probability that a
randomly picked set is a member of this family. If we can bound above this probability this will
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give us an upper bound on the size of the family, since the larger the family is, the more likely
a randomly picked set is a member. However it can be phrased as another application of the
same method. As another example we have the following simple proof using the same idea.

Let us suppose we have two families of sets A = {A1, A2, . . . , An} and B = {B1, B2, . . . , Bn}
satisfying the following properties

• |Ai| = k, |Bi| = l for all 1 ≤ i ≤ n;

• Ai ∩Bi = ∅ for all 1 ≤ i ≤ n;

• Ai ∩Bj 6= ∅ for all i 6= j, 1 ≤ i, j ≤ n.

How large can such a family be? This question is related to the transversal number of a set
system.

Definition. A set T is a transversal of a set system F if F ∩ T 6= ∅ for all F ∈ F . The
transversal number τ(F) is the size of the smallest transversal of F .

Often in combinatorics when studying objects with certain properties it is useful to consider
critical objects, those such that the removal of an element results in an object which no longer
satisfies this property. If τ(A) = l + 1 then it is critically so if and only if there exists such a
corresponding family B, since if we remove any Ai ∈ A, then Bi is a transversal of size l of the
remaining set system. So a bound on the size of such families would give us a bound on the
largest such critical F .

As before there is a natural example to consider. If we let A = [k+l](k) and let B be the set of
complements then it is simple to verify that that satisfy the two conditions, hence if we let n(k, l)
be the size of the largest n such that there exists such A and B we have that n(k, l) ≥

(
k+1
k

)
.

The following proof of Bollobás shows this is best possible.

Theorem 2.4. For any k, l ≥ 1, n(k, l) =
(
k+l
k

)
Proof. Suppose A and B as above exist. Let X =

⋃n
i=1(Ai ∪Bi) be the ground set. We pick an

ordering of X uniformly at random and let Ui be the event ”each element of Ai is smaller than
every element of Bi”. Since |Ai| = k and |Bi| = l we have that

P(Ui) =
1(
k+l
k

) .
Also we note that Ui and Uj cannot happen simultaneously for i 6= j. Indeed, suppose it

did happen. Then in the chosen ordering Ai totally preceded Bi and Aj totally precedes Bj .
However, since Ai ∩ Bj 6= ∅ 6= Aj ∩ Bi we have there exists some element x ∈ Ai ∩ Bj and
y ∈ Aj ∩ Bi. No we see that x is not less than y, since Aj precedes Bj , but also y is not less
than x, since Ai precedes Bi, a contradiction.

Therefore we see that, since the events are disjoint

P

(
n⋃
i=1

Ui

)
=

n∑
i=1

P(Ui) =
n(
k+l
k

) ,
13



and so
n(
k+l
k

) ≤ 1⇒ n ≤
(
k + l

k

)
.
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3 The First Moment Method

Suppose we have a collection of random variables X1, . . . , Xn and we are considering the random
variable X =

∑
i λiXi. The following is immediate from the linearity of integration.

Lemma 3.1. Let X1, . . . , Xn be random variables, λ1, . . . , λn ∈ R, and X =
∑n

i=1 λiXi. Then

E(X) =

n∑
i=1

λiE(Xi).

This is particularly powerful because it places no restriction on dependence between the
Xi. This makes it simple to calculate the expected value of many random variables by first
decomposing them into the sum of simpler (often indicator) random variables.

Definition. For an event A in a probability space theindicator random variable IA is defined
by

• IA(ω) = 1 if ω ∈ A

• IA(ω) = 0 if ω 6∈ A

Note that for any indicator variables IA, E(IA) = P(A). In many cases we calculate the
expectation of a random variable X by expressing it as a sum of indicator variables, since if

X =
n∑
i=1

IAi then E(X) =
n∑
i=1

P(Ai)

by linearity of expectation.

We make use of this by using the fact that there must always exist a point in the probability
space such that X ≥ E(X) and another where X ≤ E(X). This is essentially the same idea as
in Section 2, since it is using the fact that, for a randomly picked object, P(X ≥ E(X)) > 0 and
P(X ≤ E(X)) > 0 , which is apparent from the definition of expectation.

Therefore, showing that the expected value of a random variable is small or large will guar-
antee that there is an object in the probability space on which this variable is small or large.
Sometimes we will require a more general version of this, to show that it is unlikely that a
random variable exceeds its expectation significantly.

Lemma 3.2. [Markov’s Inequality] Let X be a non-negative random variable and a > 0, then

P(X ≥ a) ≤ E(X)

a
.

Proof. Consider the indicator random variable of the event that X ≥ a, let us denote it by I.
Since I = 0 if X < a and X is non-negative we have that aI ≤ X. Therefore

aP(X ≥ a) = aE(I) ≤ E(X).

15



As simple example let us look again at our proof of a lower bound on the Ramsey num-
ber R(k, k). We took a random graph G(n, 1/2) and tried to estimate the probability that it
contained a clique of size k. If we denote by X the random variable that counts the number
of cliques of size k in G then we see that X =

∑
A⊂V (G) : |A|=kXA, where XA is the indicator

function of the event that the set A ⊂ V (G) forms a clique. So by the linearity of expectation

E(X) =
∑

A⊂V (G) : |A|=k

E(XA) =
∑

A⊂V (G) : |A|=k

P(A is a clique).

Since, as before, this probability is just 2−(k2), we have that E(X) =
(
n
k

)
2−(k2). Similarly if we

let Y be the number of independent sets of size k in G we have that E(Y ) =
(
n
k

)
2−(k2) as well.

Hence, again by the linearity of expectation

E(X + Y ) = 2

(
n

k

)
2−(k2).

If we choose n sufficiently large that E(X + Y ) < 1 then we know that there must exist some
graph G(n, 1/2) in G(n, 1/2) such that X + Y ≤ E(X + Y ) < 1, however X + Y is non-negative
and takes only integer values, and so we must have that X+Y = 0, that is the number of cliques
or independent sets of size k is 0.

3.1 Hamiltonian Paths in a Tournament

Definition. A tournament is an orientation of a complete graph, that is a directed graph such
that for every u, v ∈ V (G) exactly one of (u, v) or (v, u) ∈ E(G). A Hamiltonian path in a
tournament is a directed path that meets every vertex.

This following result of Szele, from 1943, is often considered the first use of the probabilistic
method.

Theorem 3.3. There exists a tournament T on n vertices which has at least n!/2n−1 Hamilto-
nian paths.

Proof. We construct a random tournament T by choosing independently, for every pair of ver-
tices x, y ∈ [n], the edge (x, y) or (y, x) with probability 1

2 each. Let X be the random variable
which counts the number of Hamiltonian paths in T . For any given ordering of the permutation
σ of [n] let Xσ be the indicator variable of the event that σ(1), σ(2), . . . , σ(n) is a Hamiltonian
path in T . We have that, since the orientation of each edge is chosen independently,

E(Xσ) = P ((σ(i), σ(i+ 1)) ∈ T for 1 ≤ i ≤ n− 1) =
n−1∏
i=1

P ((σ(i), σ(i+ 1)) ∈ T ) =
1

2n−1
.

However X =
∑

σXσ, since σ ranges over all possible paths. Therefore

E(X) =
∑
σ

E(Xσ) =
n!

2n−1
.

Hence, the exists some tournament T where the value of X is a least E(X), that is, in this
tournament, there are at least n!/2n−1 Hamiltonian paths.

16



Szele also showed that the maximum number of Hamiltonian paths in a tournament is
O(n!/2

3
4
n). These bounds were not improved for almost 60 years, until Alon showed that the

upper bound could be improved to O(n
3
2n!/22n), also using probabilistic methods.

3.2 Turán’s Theorem

We start with another application of the first moment method to bound the size of the largest
independent set in a graph G.

Lemma 3.4. Let G be a graph and, for each v ∈ V (G), let d(v) be the degree of v. Then G
contains an independent set of size at least∑

x∈V

1

d(v) + 1

Proof. We pick an ordering, <, uniformly at random from the |V |! orderings of the set V . Let

I< = {x ∈ V : x < y for all y ∈ N(v)}

be the set of all vertices which are the smallest in their neighbourhoods. We first note that I<
is an independent set. Indeed, if v1, v2 ∈ I and (v1, v2) ∈ E(G) then, by the definition of I< we
must have v1 < v2 and v2 < v1, a contradiction. We let X = |I<| and for each v ∈ V let Xv be
the indicator random variable of the event that v ∈ I<, and note that, as before, X =

∑
v∈V Xv.

We have that E(Xv) = P(v ∈ I) and, since for a randomly picked ordering each vertex in
v ∪N(v) is equally as likely to be the smallest,

P(v ∈ I) =
1

d(v) + 1
.

Hence

E(X) =
∑
v∈V

E(Xv) =
∑
v∈V

1

d(v) + 1
.

So there must exist some ordering < such that

|I<| ≥
∑
x∈V

1

d(v) + 1
,

which is the desired independent set.

Corollary 3.5. Let G be a graph on n vertices. Then G contains a clique of size at least∑
x∈V

1

n− d(v)

Proof. Apply Lemma 3.4 to the complement of G.

It is simple to deduce (a weak form of) Turán’s Theorem from this corollary.
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Theorem 3.6 (Turán’s Theorem). Let G be a graph on n vertices such that Kr 6⊂ G, then

e(G) ≤ (r − 2)n2

2(r − 1)
.

Remark 3.7. Note that when (r−1)|n we have that the Turán graph T (n, r) has (r−1) classes
of size n/(r − 1) and so has exactly

1

2
× n× (r − 2)× n

r − 1
=

(r − 2)n2

2(r − 1)

edges.

Proof. Let k be the size of the largest clique in G, we have by corollary 3.5

r − 1 ≥ k ≥
∑
x∈V

1

n− d(v)
.

Since 1/(n− x) is concave (as a function of x), we have by Jenson’s inequality that, if d is the
average degree in G, ∑

x∈V

1

n− d(v)
≥ n

n− d
=

n2

n2 − 2e(G)
.

So, by combining the two inequality, we see that

r − 1 ≥ n2

n2 − 2e(G)
.

Re-arranging for e(G) gives that

e(G) ≤ (r − 2)n2

2(r − 1)
.

3.3 Crossing Number of Graphs

Given a graph G = (V,E) an embedding of G into the plane is a planar representation of G,
where each vertex is represented by a point, and each edge from u to v is represented by a curve
between the points represented by u and v. The crossing number of an embedding of a graph
is the number of pairs of curves which intersect, which do not share endpoints. The crossing
number of G, cr(G) is the minimal crossing number of a planar embedding of G.

For example, G is a planar graph if and only if it has crossing number cr(G) = 0. We can
use the probabilistic method to get a good lower bound on the crossing number of the graph.

Theorem 3.8. Let G be a graph such that |E| ≥ 4|V |, then

cr(G) ≥ |E|3

64|V |2
.
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Proof. Suppose we take an planar embedding of a graph with n vertices and m edges. The set
of edges which don’t cross any other edges forms a planar graph, and so by Euler’s formula there
are at most 3n − 6 ≤ 3n such edges. Therefore, it follows that the crossing number of G is at
least m− 3n.

Let us take an embedding of G with exactly cr(G) = t crossing, and let’s take a random
subgraph H of G formed by picking each vertex of G to be in H independently with probability
p, where we will pick p later. The expected number of vertices in H is p|V | and the expected
number of edges is p2|E|.

However the embedding of G induces an embedding of H in the plane, and the only crossing
points of H in this embedding will be crossing points of G. Moreso, the expected number of
crossing points in this embedding of H is exactly p4t, since for a crossing point to appear we
need all four endpoints to be in H.

However, since for each subgraph H we have that cr(H) ≥ |E(H)|−3|V (H)|, and the number
of crossings in the embedding given by G is at least the crossing number, we have that

p4t ≥ p2|E| − 3p|V |.

We let p = 4|V |/|E|(≤ 1) and see that

t ≥ 1

p4
(p2|E| − 3p|V |) =

|E|
p2
− 3
|V |
p3

=
|E|3

16|V |2
− 3

|E|3

64|V |2
=
|E|3

64|V |2
.

19



4 Alterations

Sometimes it is the case that the first attempt to find a ‘good’ object via a random construction
fails, but what we find is an object which almost satisfies our conditions. Often it is possible to
then deterministically modify this object to get what we need.

4.1 Ramsey Numbers Again

Let us again give an example of this by estimating a lower bound for the diagonal Ramsey
numbers, R(k, k)

Theorem 4.1. For any integer n,

R(k, k) > n− 2.

(
n

k

)
2−(k2).

Proof. Let us choose a graph from G(n, 1/2). As before let X be the random variable which
counts the number of cliques of size k and Y be the random variable which counts the number
of independent sets of size k. We want to estimate the number of ‘bad’ k-sets, X + Y .

We know that E(X + Y ) = 2.
(
n
k

)
2−(k2). In Theorem 2.1 we chose n such that E(X + Y ) < 1,

to guarantee the existence of a graph with no clique or independent set of size k.

However, for any n, we know that there must exists a graph G ∈ G(n, p) with X + Y ≤
E(X + Y ), that is with at most the expected number of ‘bad’ k-sets. We define a graph H ⊂ G
as follows: for each k-clique and independent set of size k in G pick a vertex and delete it.
Clearly H does not contains any clique or independent set of size k. However H has at least

n− (X + Y ) ≥ n− E(X + Y ) = n− 2.
(
n
k

)
2−(k2) vertices.

So by picking an appropriate n we might hope to get a better bound then before (note that

when we apply Theorem 4.1 to the smallest n such that 2.
(
n
k

)
2−(k2) < 1 we get the same bound

as before, so we can only do better). We have that

n− 2.

(
n

k

)
2−(k2) ≥ n− 2.

(en
k

)k
2−

k(k−1)
2 ,

and so by differentiation the maximum should appear when

1 = 2.knk−1 e
k2−

k(k−1)
2

kk
,

which is when

n ∼ k

e
2
k
2 .

In fact, if we’re careful and use Stirling’s approximation we can show this optimal. Plugging
this back into Theorem 4.1 gives

R(k, k) > (1 + o(1))
k

e
2
k
2 .
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This is an improvement of our bound from Theorem 2.1 of 2
k
2
−1, however a more careful analysis

of that proof would give a bound that only differs from this one in a factor of 1√
2
, not much of

an improvement at all.

We can also get similar bounds for the off diagonal Ramsey numbers in the same way.

Theorem 4.2. For all integers n and p ∈ [0, 1]

R(k, l) > n−
(
n

k

)
p(
k
2) −

(
n

l

)
(1− p)(

l
2).

The proof is the same as Theorem 4.1, however instead of picking a graph from G(n, 1/2) we
do so from G(n, p). The two terms in the theorem are now the expected number of cliques of
size k and independent sets of size l, and hence by the alteration method there exists a graph
with at most the expected number of such sets. Deleting a vertex from each such gives the
desired graph witnessing the bound on R(k, l). Let us compare this to the bound we get from
a straightforward application of the random method.

Theorem 4.3. If there exists an integer n and p ∈ [0, 1] such that(
n

k

)
p(
k
2) +

(
n

l

)
(1− p)(

l
2) < 1

Then R(k, l) > n.

As before, any n and p which give a bound in Theorem 4.3 give the same bound in Theorem
4.2. The precise asymptotics of these two expressions can get fairly complex, we will see an
example in the exercise class that Theorem 4.2 gives the bound

R(k, l) = Ω

((
l

log (l)

) k
2

)
.

4.2 Graphs of High Girth and High Chromatic Numbers

A natural question to ask about many graph parameters that are defined globally, is to what
extent local restrictions can affect them. For example let us consider the chromatic number of
a graph, χ(G).

Definition. A k-colouring of a graph G is a function f : V (G)→ [k] such that (v, w) ∈ E(G)⇒
f(v) 6= f(w). The chromatic number of G, χ(G), is the smallest k such that a k-colouring exists.

Suppose we know that in a local sense the chromatic number is small, can the graph still
have large chromatic number?

Recall that the girth of a graph G, g(G), is the size of the shortest cycle in G. If a graph has
no short cycles of odd length (which is certainly true if it contains no short cycles) then locally
the graph looks bipartite. In particular if the girth of G is larger than g then we can properly
2-colour all the vertices within distance g of any specific vertex. Therefore if graphs exists with
arbitrarily high girth and chromatic number, we know that we can’t deduce anything about the
chromatic number of a graph from the chromatic numbers of its subgraphs of a fixed size.
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Theorem 4.4. For any k, l > 0, there exists a graph G such that χ(G) > k and g(G) > l.

Proof. We want to prove this using the random method. So we want to pick a graph G(n, p)
for some appropriately chosen n, p and show that with positive probability it has high girth and
cromatic number. The chromatic number seems difficult to calculate for a random graph, but
we can bound it very naturally by the independence number of the graph, χ(G) ≥ n/α(G), since
each colour class must form an independent set.

So our idea is to look at the random variables X, which counts the number of cycles in G
with length ≤ l, and Y , which counts the number of independent sets of size n/k. Note that if
we have no independent sets of size n/k, we also don’t have any larger ones.

As before if we could show that, for some n and p the expected value of X + Y is less than
1, then we would know there existed a graph on n vertices satisfying our conditions.

However a bit of thought suggests this is unlikely to work. A random graph is likely to have
lots of triangles if p >> 1/n. Indeed the expected number of triangles is

(
n
3

)
p3 ∼ (np)3, so if we

want E(X) < 1 we need p = O(1/n). However in this range of probability we expect many big
independent sets. Indeed the expected number of independent sets of size a is, when p < 1/2(

n

a

)
(1− p)(

a
2) ≥

(n
a

)a
(1− p)a2 ≥

(n
a

)a
e−2pa2 .

So if p = O(1/n) and we look at independent sets of size n/k we see that the expected number
is at least

(k)
n
k e−

2n
k2 ,

which for general k will tend to infinity.

However if we pick p to be just more than 1/n we will be able to show that this term tends
to 0, and whilst the first term will no longer be small, we will be able to show it is still small
compared to n.

We can then use Markov’s inequality to say that the probability that both X and Y are far
away from their averages is small, and so conclude there is a graph G with no large independent
sets (and so large chromatic number) and less than n/2 short cycles. We would then like to
remove a vertex from each of the short cycles to get a graph with large girth and chromatic
number. However we have to be a little careful here, since removing vertices from the graph will
change the bound we get on the chromatic number from the independence number. With this
in mind we will be slightly overzealous and instead of Y consider the random variable Y ′ which
counts the number of independent sets of size n/2k.

Now suppose we let p = nε−1 for some small ε > 0, how many cycles of length i do we expect
for each i? Well there are at most ni potential (ordered) vertex sets for the cycles, and for each
of those vertex sets the probability that they form a cycle is pi. Therefore the expected number
of cycles of length ≤ l

E(X) ≤
l∑

i=3

nipi =
l∑

i=3

(n.nε−1)i =
l∑

i=3

nεi

So if we let ε < 1/l we have that E(X) = o(n) and so, by Markov’s inequality we have that, for
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large enough n,

P(X ≥ n/2) ≤ E(X)
n
2

<
1

2
.

How does this improvement of ε affect E(Y ′)? Well, with a = n/2k we have that

E(Y ′) =

(
n

a

)
(1− p)(

a
2) ≤ nae−p

a(a−1)
2

= ea log (n)e−p
a(a−1)

2 = ea(log (n)−p (a−1)
2

)

However, since a = n/2k and p = nε−1 for some ε > 0, we have that log (n)− p(a− 1)/2→ −∞
and hence, as n → ∞, E(Y ′) → 0. Therefore, for large enough n, E(Y ′) < 1/2 and so by
Markov’s inequality

P(Y ′ ≥ 1) < 1/2.

Therefore, by the union bound, there is a non-zero probability that there exists a graph
G(n, p) such that Y ′ = 0 and X < n/2. If we remove one vertex from each of the cycles of
length less than l in G we produce a graph G′ with the following properties

• |G′| ≥ n/2 > 0;

• g(G′) > l;

• α(G′) < n/2k and so χ(G′) ≥ |G′|/α(G′) ≥ k.
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5 Dependent random choice

Recently a technique which is based on a simple application of the alteration method has been
used in various contexts, normally to do with embedding sparse graphs. In this chapter we
give a short overview of the method, which is known as dependent random choice, and a few
examples of applications.

The basic idea can be summarised as follows: We would like to find, in a dense graph (that
is a graph with large minimum/average degree), a set of vertices U such that every small subset
of U has many common neighbours. To do this, we first pick a small set of vertices T at random
from the graph and let U ′ be the set of common neighbours of T . Intuitively, if we have some
subset of G with not many common neighbours, then it is unlikely that all the members of T
will lie in this set of common neighbours, and hence it is unlikely to be a subset of U ′. Therefore
the expected number of ‘bad’ subsets in U ′ will be small and so by removing a small number of
vertices, one from each ‘bad’ set, we should find a set U with the desired properties.

Lemma 5.1. Let G be a graph with |G| = n and let d = 2|E(G)|/n be the average degree of G.
If there exist positive integers t, a,m, r such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

then G contains a subset U of at least a vertices such that every subset R ⊂ U of size |R| = r
has at least m common neighbours.

Proof. For any set X ⊂ V let Γ(X) = {v ∈ V : v ∈ N(x) for all x ∈ X} be the set of
common neighbours of X. We pick a set of vertices T uniformly at random from V t, that is
with repetition. Let A = Γ(T ) be the set of common neighbours of T , and let X be the random
variable with counts the size of A. for any vertex v, the probability that v ∈ A is the probability
that every element of T is a neighbour of v and so, by linearity of expectation

E(X) =
∑
v∈V

(
|N(v)|
n

)t
= n−t

∑
v∈V
|N(v)|t.

Since the function f(x) = xt is convex, we can use Jensen’s inequality to say

E(X) ≥ n−t.n
(∑

v∈V |N(v)|
n

)t
= n1−t

(
2|E(G)|

n

)t
=

dt

nt−1
.

Let Y be the random variable which counts the number of subset R ⊂ A of size r with fewer
than m common neighbours. For any R ⊂ V , let Γ(R) be the set of common neighbours of R,
then the probability that R is a subset of A is just(

|Γ(R)|
n

)t
.

Therefore, if we let R = {R ⊂ G : |R| = r and |Γ(R)| < m} be the set of ‘bad’ subset of V , we
have that

E(Y ) =
∑
R∈R

P(R ⊂ A) =
∑
R∈R

(
|Γ(R)|
n

)t
<

(
n

r

)(m
n

)t
.
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Therefore we have that

E(X − Y ) ≥ dt

nt−1
−
(
n

r

)(m
n

)t
≥ a.

Therefore there exists a choice of T for which X−Y ≥ a. We delete one vertex from each subset
R of Γ(T ) of size r with fewer than m common neighbours. Let U be the remaining subset of
Γ(T ). We have that |U | = X − Y ≥ a and by construction every subset of U of size r has at
least m common neighbours.

Once we have a large set U such that every small subset has many common neighbours we
can embed bipartite graphs in it in the following way

Lemma 5.2. Let G be a graph, a,m, r be positive integers and suppose there exists a subset
U ⊂ V (G) of at least a vertices such that every subset R ⊂ U of size r has at least m common
neighbours.

If H is a bipartite graph on vertex sets A and B such that |H| ≤ m, |A| ≤ a and every vertex
in B has degree at most r, then H is a subgraph of G.

Proof. We wish to find an embedding of H in G given by an injective function φ : V (H) →
V (G). We start by picking an injective function φ : A → U arbitrarily, which is possible since
|U | ≥ a ≥ |A|.

We label the vertices of B as v1, v2, . . . , vb and try to embed them in this order one at a time.
Suppose we have already defined φ(vi) for all i < j and we wish to embed vj . Let Nj ⊂ A be
the neighbourhood of vj , so |Nj | ≤ r. Since φ(Nj) is a subset of U of size at most r, there are
at least m vertices in G adjacent to all the vertices in φ(Nj). Since the total number of vertices
embedded already is less than |H| ≤ m, there is at least one vertex w ∈ G which has not been
used in the embedding and is adjacent to all the vertices in φ(Nj). We set φ(vj) = w.

After we have embedded every vb it follows that φ is the desired embedding of H as a subgraph
of G.

5.1 Turán Numbers of Bipartite Graphs

The abundance of variables in Lemma 5.1 make it difficult to understand exactly what’s going
on, so let’s look at an example of an application. For a graph H and an integer n, the Turán
number ex(n,H) denotes the maximum number of edges in a graph on n vertices which does
not contain H as a subgraph. Turán’s theorem determines this number precisely for complete
graphs H = Kr, and the asymptotic behaviour for graphs of chromatic number at least 3 is
given by the well known result of Erdős and Stone

Theorem 5.3 (The Erdős-Stone Theorem). For any graph H with χ(H) ≥ 3

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)

For bipartite graphs the situation is much more complicated, and there are relatively few
non-trivial bipartite H for which the order of magnitude of ex(n,H) is known. The following
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result gives a bound for the Turán number of bipartite graphs in which one vertex class has
bounded degree.

Theorem 5.4. Let H be a bipartite graph on vertex sets A and B such that all vertices in B
have degree at most r. Then there exists some constant c = C(H) such that

ex(n,H) ≤ cn2− 1
r .

Proof. Let a = |A| and b = |B|. The idea is, given a graph G with |V (G)| = n and e(G) ≥
cn2−1/r, to use Lemma 5.1 to find a subset U ⊂ V (G) of size at least a in which all the subsets
of size r have at least a+ b common neighbours.

So let us check that the required bound holds in Lemma 5.1. We let m = a + b, t = r and

(for reasons which will become clear) let c = max
(
a1/r, e(a+b)

r

)
, note that c depends only on

H. Given a graph G with |V (G)| = n and e(G) ≥ cn2−1/r, the average degree of G satisfies
d ≥ 2cn1−1/r. Therefore

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2c)r −

(en
r

)r (a+ b

n

)r
≥ (2c)r −

(
e(a+ b)

r

)r
≥ cr

≥ a.

Therefore by Lemma 5.1 there exists a subset U of V (G) of size at least a in which all the
subsets of size r have at least a+ b common neighbours. Hence, by Lemma 5.2 H is a subgraph
of G.

These bounds are best possible in terms of their dependence on r. Indeed it is known the
the Turán number of the complete bipartite graphs Kt,r when t ≥ (r − 1)! is Ω(n2− 1

t ).

5.2 The Ramsey Number of the Cube

Definition. The Ramsey number of an arbitrary graph H is

r(H) = min{n : Every 2 colouring of Kn contains a monochromatic copy of H}.

For example in this language we have that r(Kk) = r(k, k). The r-dimensional Hypercube,
Qr, is a graph with vertex set {0, 1}r where two vertices are adjacent if and only if they differ
in exactly one coordinate.

An old conjecture of Burr and Erdős is that the Ramsey number of the cube is linear in
the number of vertices, that is there exists some constant C such that r(Qr) ≤ C2r. Early
bounds were much worse than this, for example Beck showed that r(Qr) ≤ 2Cr

2
. More recently

Shi obtained the first bound which was polynomial in the number of vertices, showing that
r(Qr) ≤ 2Cr+o(r) for some C ∼ 2.618. Lemma 5.1 easily implies a, slightly worse, polynomial
bound on r(Qr).
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Theorem 5.5.
r(Qr) ≤ 23r

Proof. Let n = 23r. Given any two colouring of Kn, one of the colour classes contains at least
half the edges. Let G be the graph of this colour.

Since Qr is a bipartite graph, with vertex sets of size 2r−1 and maximum degree r, we would
like to use Lemma 5.1 as before to find a set U of size at least 2r−1 such that every set of r
vertices has at least 2r common neighbours.

So let us set a = 2r−1, m = 2r and r = r. We want to choose an appropriate t such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

where d is the average degree of G. Note that, since G has at least half of the edges of Kn we
have that

d ≥ 2
e(G)

n
≥ 1

2
(n− 1) ≥ 2−cn,

for an appropriately chosen c > 1. Now

dt

nt−1
−
(
n

r

)(m
n

)t
≥ 2−ctn− nr

r!

mt

nt

= 2−ctn− nr−tmt

r!

= 23r−ct − 23r2−2rt

r!
.

Setting t = 3
2r makes the second term negligible and so, to make the first term large we need

3r − c3
2r ≥ r, so for example we can take c = 4/3. All together this gives us

dt

nt−1
−
(
n

r

)(m
n

)t
≥ 2r − 1

r!
≥ 2r−1 = a.

Hence, as before, we can use Lemma 5.2 to say that Qr is a subgraph of G, that is, in any
2-colouring of Kn, the largest colour class will contain a subgraph isomorphic to Qr. Therefore
r(Qr) ≥ n = 23r.

5.3 Improvements

Lemma 5.1 tells us that in any sufficiently dense graph on n vertices we can find a large set of
vertices U such that every small subset has many common neighbours. For many applications it
would be useful to have both the size of U and the number of common neighbours to be linear
in n, for example if we wished to prove that the Ramsey number of the cube was linear in the
number of vertices using the same method.

However one can construct graphs with average degree just less than n/2 such that any
linear size subset of the vertices contains a small subset (in fact even a pair of vertices) with
o(n) common neighbours.
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However using a similar proof based on alterations one can prove that in every dense graph
there exists a subset U of linear size in which almost every small subset has linearly many
common neighbours.

Lemma 5.6. Let ε > 0, r ≤ n be positive integers, and G a graph on N > 4rε−rn vertices with
at least εN

2

2 edges. Then there is a subset U ⊂ V (G) with |U | > 2n such that number of subsets
S ⊂ U with |S| = r and less than n common neighbours is at most

1

(2r)r

(
|U |
r

)
.

How might this be useful? Well if we think about that proof of Lemma 5.2 given a set U such
that every small subset had many common neighbours, we embedded a bipartite graph H by
arbitrarily embedding the left hand side in U , and that verifying that we can always extend that
to an embedding of H, using the fact that when we want to embed a vertex v on the right hand
side, the image of it’s neighbourhood is a small set in U , and so has many common neighbours
which are all candidates for the image of v.

If we were more careful in how we embedded the left hand side of H into U at the beginning,
then if sufficiently few of the small sets in U don’t have many common neighbours, we could
try to embed the left hand side in such a way that none of these ‘bad’ small sets appear
as neighbourhoods of things in the right hand side of H. We could then extend this to an
embedding of H as before.

Obviously this will require some slightly stronger conditions on the graphs H we consider.
The specific numbers in this lemma have been chosen so that an analogy of the embedding
lemma (Lemma 5.2) carries over in this way for graphs with ∆(H) ≤ r. Using this one can
improve on the previous bound to

Theorem 5.7.
r(Qr) ≤ r22r+3 ≤ 22r+o(r).
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6 The Second Moment Method

6.1 Variance and Chebyshev’s Inequality

Markov’s inequality tells us that, for a non-negative random variable X, if the expectation of
X gets small, then it’s very likely that X is small. What about if the expectation of X is large,
can we say that it’s very likely that X is large? Clearly in general this is not true, we can take
a random variable that is almost always 0, except it takes the values N2 with probability 1/N
for some large N . The expectation is arbitrarily large, and yet it’s very likely that X is small.

With this in mind we introduce the concept of variance which can be thought of as a measure
of how close to its expectation we expect a random variable to be.

Definition. The variance of a random variable X is

Var(X) := E
(

(X − E(X))2 ) = E(X2)−
(
E(X)

)2
,

where the first equality is the definition, and the second follows from linearity of expectation.

So Var(X) is the expected value of the square of the difference between X and its average.
Here we take the square since we only care about the magnitude of the difference between X
and its average, not the sign, but working with absolute values is much more difficult.

Unlike E(X), the variance is not a linear operator. If we want to calculate the variance of
a sum of random variables we need to know something about their pairwise dependence. As
a example suppose we have two random variables X and Y , we can calculate the variance of
X + Y in terms of X and Y directly from the definition using the linearity of expectation.

Var(X + Y ) = E
(
(X + Y )2

)
−
(
E(X + Y )

)2
= E(X2 + 2XY + Y 2)−

(
E(X) + E(Y )

)2
= E(X2) + 2E(XY ) + E(Y 2)−

(
E(X)

)2 − 2E(X)E(Y )−
(
E(Y )

)2
= Var(X) + Var(Y ) + 2(E(XY )− E(X)E(Y ))

This motivates the following definition.

Definition. The covariance of two random variables X and Y is

Cov(X,Y ) = E
((
X − E(X)

)(
Y − E(Y )

))
= E(XY )− E(X)E(Y ).

Lemma 6.1. Given a sequence of random variables X1, X2, . . . , Xn, let X =
∑

iXi. Then

Var(X) =
n∑
i=1

Var(Xi) +
∑
i 6=k

Cov(Xi, Xj).
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Proof.

Var(X) = E(X2)−
(
E(X)

)2
= E

(∑
i

Xi

)2
−(E(∑

i

Xi

))2

=
∑
i

E
(
X2
i

)
+
∑
i 6=j

E(XiXj)−
∑
i

(E(Xi))
2 −

∑
i 6=j

E(Xi)E(Xj)

=
∑
i

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj).

Note that if X and Y are independent then Cov(X,Y ) = 0, but be careful to remember that
the opposite is not true. If the variance of the random variable is small we will expect it to be
quite likely that the random variable takes values near it’s mean, since the expected deviation
is low. The following inequality of Chebyshev formalises this idea.

Lemma 6.2 (Chebyshev’s Inequality). Let X be a random variable with Var(X) < ∞. Then
for any t > 0

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

Proof. We apply Markov’s inequality to the non-negative random variable (X − E(X))2. Since
E((X − E(X))2) = Var(X) we have that

P(|X − E(X)| ≥ t) = P((X − E(X))2 ≥ t2) ≤ Var(X)

t2
.

It is not too hard to produce simple random variables where Lemma 6.2 is best possible.

6.2 Threshold Functions

Given a random graph G(n, p) and an arbitrary graph H, a natural question to consider is what
is the probability that H appears as a subgraph of G. For example let us consider the triangle,
K3. We note that the property of containing a triangle as a subgraph is a increasing property
of graphs; that means, if it holds for a graph G and G ⊂ G′, it also holds for G′. We can
similarly define a decreasing property of graphs, and we call a property that is either decreasing
or increasing a monotone property.

It seems likely that, for very small p, G(n, p) will almost surely contain no triangles, whereas
for large p, the appearance of a triangle is very likely.

Let T be the random variable which counts the number of triangles in G(n, p). For any
given triple of vertices, the probability that they form a triangle is p3. Hence, by linearity of
expectation, the expected number of triangles is

E(T ) =

(
n

3

)
p3 ∼ n3p3.
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This will tend to 0 if p(n) = o(1/n). Hence, by Markov’s inequality, if p(n) = o(1/n) we have
that

P(K3 ⊂ G(n, p)) = P(T ≥ 1) ≤ E(T )→ 0,

and so the probability that G(n, p) contains a triangle tends to zero as well.

On the other hand suppose that p = ω(1/n). We have that E(T )→∞ and so we would like
to be able to conclude that G will almost surely contain at least 1 triangle. As we mentioned
before, the fact that the expected number of triangles grows arbitrarily large is not sufficient to
conclude the probability of containing one is large, to do so we must prove that the variance is
also small (compared to the expectation). The standard method to do so, for a non-negative
random variable X, is to apply Chebyshev’s inequality with t = E(X).

Lemma 6.3. Let X1, X2, . . . be a sequence of non-negative random variables such that

Var(Xn)

E(Xn)2
→ 0.

Then
P(Xn > 0)→ 1.

Proof. We let t = E(Xn) and apply Chebyshev’s inequality to see that

P(Xn = 0) ≤ P(|E(X − E(X)| ≥ E(X)) ≤ Var(X)

(E(X))2
.

Hence have that
P(Xn = 0)→ 0,

from which the claim follows.

So if we can show that, when p = ω(1/n), Var(T )/(E(T ))2 → 0, we would know that the
probability that G(n, p) doesn’t contain a triangle will tend to 0. (Strictly here we are thinking
of T as a sequence of random variables, one for each n ∈ N).

So we need to calculate Var(T ). When a random variable X can be written as a sum of
indicator random variable of a set of events A ⊂ Σ, that is

X =
∑
A∈A

IA,

then it is possible to express the variance of X in a simple way as a sum. We note that
E(IA) = P(A), and that (IA)2 = IA for all A, and so

Var(IA) = E((IA)2)− (E(IA))2 = P(A)− P(A)2 = P(A)(1− P(A)).

Also, it is a simple check that

Cov(IA, IB) = E(IAIB)− E(IA)E(IB) = P(A ∩B)− P(A)P(B) = P(A)(P(B|A)− P(B)).

Therefore by Lemma 6.1 we see that

Var(X) =
∑
A∈A

P(A)(1−P(A))+
∑
A 6=B

P(A)(P(B|A)−P(B)) =
∑
A∈A

P(A)

(∑
B∈A

P(B|A)− P(B)

)
.
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This can be a useful equality to remember. For example T is the sum of the indicator random
variables I{A is a triangle} over A ⊂ [n] such that |A| = 3. So to evaluate Var(T ) we can use the
above sum.

For any particular A we have to split the inner term into cases depending on |A∩B|. When
|A ∩ B| ≤ 1, then A and B do not share an edge, and so we have that P(B|A) = P(B). Hence,
there is no contribution to the sum from these pairs.

When |A ∩ B| = 2 the two triangles share an edge, and so P(B|A) − P(B) = p2 − p3. For
any particular A there are 3(n − 3) such B, since for each of the 3 edges in A we have n − 3
remaining choices for the third vertex in B.

Finally if |A ∩ B| = 3 (that is, A = B) we have that P(B|A) − P(B) = 1 − p3, and for each
A there is exactly 1 such B. Hence we see that

Var(T ) =
∑

A∈[n](3)

P(A is a triangle)

 ∑
B∈[n](3)

P(B|A)− P(B)


=

∑
A∈([n]3 )

P(A is a triangle)
(
3(n− 3)(p2 − p3) + (1− p3)

)
=

(
n

3

)
p3
(
3(n− 3)(p2 − p3) + (1− p3)

)
.

So we can now say that

Var(T )

E(T )2
=

(
n
3

)
p3
(
3(n− 3)(p2 − p3) + (1− p3)

)((
n
3

)
p3
)2

=

(
3(n− 3)(p2 − p3) + (1− p3)

)(
n
3

)
p3

≤
(
3n(p2) + 1

)
(np)3

12

≤
(
36(np)2 + 12

)
(np)3

=
36

np
+

12

(np)3
.

Therefore if p = ω(1/n) we have that 1/(np) = o(1) and so

Var(T )

E(T )2
→ 0.

Therefore, by Lemma 6.3, if p = ω(1/n) we have that P(T ≥ 1) → 1, and so almost surely
G(n, p) contains a triangle.

So we have that there is a transition between random graphs that contain a triangle almost
never or almost always, when p is around 1/n. In order to decsribe this phenomenon more
generally, Erdős and Rényi introduce the notion of a threshold function.

Definition. A function r : N→ R is a threshold function for a monotone graph property A, if
for any p : N→ [0, 1]

• p(n) = o(r(n)) ⇒ P(A holds for G(n, p))→ 0;
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• p(n) = ω(r(n)) ⇒ P(A holds for G(n, p))→ 1.

Note that for a general property A a threshold function might not exist, and, if it does exists,
it is not unique. For example for the property of containing a triangle we saw that a threshold
function was r(n) = 1/n, but r(n) = c/n (for any c > 0) could serve as well.

6.3 Balanced Subgraphs

We could ask the same question for any graph H: Is there a threshold function for the property
of containing H as a subgraph, and if so, what is an example of one? It turns out that the
approach given above for triangle can be extended to any graph H which is balanced.

Definition. Let H be a graph with |H| = v and e(H) = e. The density of H is defined to be

ρ(H) =
e

v
.

H is said to be balanced if no subgraph of H has strictly greater density than H itself.

Theorem 6.4. Let H be a balanced graph with density ρ. Then

r(n) = n
− 1
ρ

is a threshold function for the event that H is a subgraph of G(n, p).

Proof. Let |V (H)| = v and |E(H)| = e, and so ρ = e/v. We denote the vertices of H by
{h1, h2, . . . , hv}. Given an ordered v-tuple β = (b1, b2, . . . , bn) ∈ [n]

(
= V (G(n, p))

)
we let Aβ

denote the event that G(n, p) contains an appropriately ordered copy of H on β. That is, Aβ
occurs if the mapping hi 7→ bi is a graph homomorphism.

Let Xβ be the indicator random variable of the event Aβ and let X =
∑

β Xβ, where the sum
is over all ordered v-tuples. Note that X does not count precisely the number of copies of H in
G(n, p) since, due to potential symmetries in H, some copies may be counted more than once.
However the two conditions X = 0 and X > 0 are still equivalent to the events that G(n, p)
doesn’t contain a copy of H and G(n, p) does contain a copy of H respectively.

For any β we have that P(Aβ) = pe. Hence, by linearity of expectation

E(X) =
∑
β

P(Aβ) = v!

(
n

v

)
pe ≤ nvpe.

Therefore, if p(n) = o(n−v/e), then

E(X) ≤ nvpe = o(1)→ 0.

Hence by Markov’s inequality we have that P(X = 0) → 1. So it remains to show that, when
p(n) = ω(n−v/e) we have that P(X ≥ 1)→ 1. For this we will need to calculate Var(X).

We have, as before, that

Var(X) =
∑
β

P(Aβ)

(∑
γ

P(Aγ |Aβ)− P(Aγ)

)
.
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As before we split the sum into cases according to |β ∩ γ| (when understood as sets). If
|β∩γ| ≤ 1, the two vertex sets share no edges, and so the two events are independent. Therefore
there is no contribution to the sum from such pairs. If |β ∩γ| = t ≥ 2 then, since H is balanced,
the two copies of H have at most tρ edges in common. Hence

P(Aγ |Aβ)− P(Aγ) ≤ pe−tρ.

For any given β there are O(nv−t) different γ which share t vertices with β (since the size of
H is a fixed constant). Therefore we have,

Var(X) =
∑
β

P(Aβ)

(∑
γ

P(Aγ |Aβ)− P(Aγ)

)

=
∑
β

P(Aβ)

(
v∑
t=2

O(nv−t)pe−tρ

)

≤ E(X)

(
v∑
t=2

O((nvpe)1− t
v )

)
.

Therefore, noting that E(X) ≥ 1/2(nvpe) for large enough n, we have that

Var(X)

E(X)2
≤ 2

∑v
t=2O((nvpe)1− t

v )

nvpe

= O

(
v∑
t=2

(nvpe)−
t
v

)
→ 0.

The last equality holds since p = ω(n−v/e) implies that nvpe → ∞. Hence, by Lemma 6.3,
we have that P(X ≥ 1)→ 1, and so almost surely G(n, p) contains a copy of H.

We note that, if H is a graph with |H| = v and e(H) = e which is not balanced, then
r(n) = n−v/e is not a threshold function the existence of H as a subgraph. Indeed, suppose
H1 ⊂ H is a subgraph with ρ(H) < ρ(H1). Let |H1| = v1 and e(H1) = e1. Then we can pick
some α such that v1/e1 < α < v/e and set p = n−α. However now the expected number of
copies of H1 in G(n, p) is o(1), and so by Markov’s inequality almost surely G(n, p) contains no
copy of H1, and thus no copy of H.

So for general H, if a threshold function of the form n−α exists, α can’t be any bigger than
1/ρ(H ′) for any subgraph H ′. It turns out that the converse of this is true. We don’t include
the proof, but note that it can be proved using the same methods.

Theorem 6.5. Let H be a graph and H ′ ⊂ H a subgraph of H with the maximum density.
Then

r(n) = n
− 1
ρ(H′)

is a threshold function for the event that H is a subgraph of G(n, p).
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7 The Hamiltonicity Threshold

In the following chapter we present a proof of the threshold function for the existence of a
Hamiltonian cycle in G(n, p). We will first find the threshold function for connectivity. It is
clear that, since a Hamiltonian graph must be connected, the threshold for Hamiltonicity must
be at least as large as the threshold for connectivity. It will turn out that, up to a constant
factor, the two are the same.

7.1 The Connectivity Threshold

In this section we will show that r(n) = log (n)/n is a threshold function for the event that
G(n, p) is connected. The proof can be split into two smaller parts, we first show that if
p(n) = o(r(n)) then in fact almost surely there exists an isolated vertex (and so in particular
G is disconnected). Then we show that if p(n) = ω(r(n)) then with high probability G has no
component of size ≤ n/2 (and so, in particular G must be connected).

It is a general feature of many probabilistic proofs that, if we want to estimate the probability
of an event happening it is often more convenient to estimate the probability of a simpler event
which will imply the former.

In fact we will show more for the first part, that in fact r(n) is also a threshold function for
the event that G(n, p) contains an isolated vertex.

Theorem 7.1. r(n) = log (n)/n is a threshold function for the event that G(n, p) contains an
isolated vertex

Proof. We let X1 be the random variable which counts the number of isolated vertices in G(n, p).
We note that X1 =

∑
v∈V Xv where Xv is the indicator random variable of the event that v is

isolated, or equivalently that d(v) = 0. We have that E(Xv) = P(d(v) = 0) = (1− p)n−1. Hence
by linearity of expectation

E(X1) =
∑
v∈V

E(Xv) = n(1− p)n−1.

If p(n) = ω(log (n)/n) then we see that

E(X1) = n(1− p)n−1 ≤ ne−p(n−1) = ne−ω(log (n)) = o(1).

(In fact, as we will use later, this is true as long as p(n) ≥ c(log (n)/n) for some fixed large c.)

So by Markov’s inequality we have that P(X1 = 0) → 1 and so, almost surely, G contains
no isolated vertices. If p(n) = o(log (n)/n) we wish to apply the second moment method, so we
have to estimate Var(X1). We have that
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Var(X1) =
∑
v

P(d(v) = 0)

(∑
w

P(d(w) = 0|d(v) = 0)− P(d(w) = 0)

)

=
∑
v

P(d(v) = 0)

(1− (1− p)n−1) +
∑
w 6=v

(1− p)n−2 − (1− p)n−1


= E(X1)

(
(n− 1)p(1− p)n−2 + (1− (1− p)n−1)

)
.

Hence
Var(X1)

E(X1)2
≤ (n− 1)p(1− p)n−2 + 1

n(1− p)n−1
≤ p

1− p
+

1

n(1− p)n−1
= o(1).

Therefore, by the usual arguments, P(X1 ≥ 1)→ 1.

If a graph is connected, it cannot have any isolated vertices and therefore we have that, if
p(n) = o(log (n)/n), then

P(G(n, p) is connected) ≤ P(X1 = 0)→ 0

and so almost surelyG(n, p) isn’t connected. To show the converse, that if p(n) = ω(log (n)/n)
then almost surely G(n, p) is connected, we estimate the expected number of small components.
Let Xk be the random variable which counts the number of components of size k in G(n, p).

Lemma 7.2. If p(n) = c log (n)/n, for c ≥ 1, then

n
2∑

k=2

P(Xk > 0) = o(1).

Proof. By Markov’s inequality we have that

n
2∑

k=2

P(Xk > 0) ≤

n
2∑

k=2

E(Xk).

We would like to bound the expected number of components of order k. For any set |A| = k
of vertices we let IA be the indicator random variable that A is a component in G(n, p).

Since E(X) =
∑

P(A is a component) we would like to bound the probability that A is a
component. This can be split into two independent events.

Firstly it is necessary that there are no edges between A and [n] \ A. This happens with
probability (1−p)k(n−k), since there are k(n−k) edges to consider. Secondly we need to estimate
the probability that A is connected. To do this we use a result of Cayley (without proof) that
the number of spanning trees on k vertices is kk−2. For each tree we have that the probability
that it is contained in G(n, p) is pk−1 and so, by a simple union bound, we have the probability
that A is connected is at most kk−2pk−1.
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Combining this we see that

E(Xk) =
∑
|A|=k

P(A is a component) ≤ kk−2pk−1(1− p)k(n−k),

and so,
n
2∑

k=2

E(Xk) ≤

n
2∑

k=2

(
n

k

)
kk−2pk−1(1− p)k(n−k) =

n
2∑

k=2

µk.

What can we say about the terms µk. Well, using our standard inequalities
(
n
k

)
≤ (en/k)k

and (1− p) ≤ e−p we see that

µk ≤
(en
k

)k
kk−2

(
c log (n)

n

)k−1(
1− c log (n)

n

)k(n−k)

≤ nek(c log (n))k−1e−
c log (n)

n
k(n−k)

≤ exp

(
log (n) + k + (k − 1) log (c) + (k − 1) log (log (n))− kc log (n) + k2 c log (n)

n

)
.

For small k, say in the range 2 ≤ k ≤ 10 we can crudely bound the expression by

µk ≤ exp
(
(k − 1)(log (log (n))− log (n)) +O(1)

)
≤ O

((
log (n)

n

)(k−1)
)
.

For larger k we have that,

µk ≤ exp

(
log (n) + k + (k − 1) log (c) + k log (log (n))− kc log (n) + k

c log (n)

2

)
≤ exp

(
log (n) + k log (log (n))− k log (n)

4

)
= O

(
n

(
log (n)

n
1
4

)k)
.

So we can conclude that

n
2∑

k=2

µk ≤
10∑
k=2

O

((
log (n)

n

)(k−1)
)

+

n
2∑

k=10

O

(
n

(
log (n)

n
1
4

)k)

≤ O
(

log (n)

n

)
+
n

2
O

(
n

log (n)

n
10
4

)
= o(1).

Hence
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n
2∑

k=2

P(Xk > 0) = o(1)

as claimed.

Theorem 7.3. r(n) = log (n)/n is a threshold function for the event that G(n, p) is connected.

Proof. As noted if p(n) = o(log (n)/n) then by Theorem 7.1

P(G(n, p) is connected) ≤ P(X1 = 0)→ 0

and so almost surely G(n, p) isn’t connected. Conversely if p(n) = c(log (n)/n), for large
enough C, then by Lemma 7.2

n
2∑

k=2

P(Xk > 0) = o(1).

Also note that, by Theorem 7.1 P(X1 > 0) = o(1) for p(n) = c(log (n)/n) as well, for large
enough c. Now we note that G(n, p) is disconnected if and only if it has some component of size
less than n/2. Hence by a union bound

P(G(n, p) is not connected) ≤

n
2∑

k=1

P(Xk > 0) = o(1).

Therefore, almost surely G(n, p) is connected. Since being connected is a monotone property,
and since if a monotone property holds almost surely for G(n, p) it also holds almost surely
for G(n, p′) for all p′ ≥ p, we have that, if p(n) = ω(log (n)/n, then almost surely G(n, p) is
connected.

We note that a more careful analysis of the proof would show that in fact there is a much
sharper threshold. More specifically if p(n) = c log (n)/n then G(n, p) is almost surely connected
when p > 1 and almost surely not connected when p < 1. Much more precise results are know
for the threshold for connectivity, specifically

• p(n) = (log (n)− ω(n))/n then almost surely G(n, p) contains an isolated vertex;

• if p(n) = (log (n) + ω(n))/n then almost surely G(n, p) is connected.

We now have that if p(n) = c log (n)/n with c < 1 then G(n, p) is almost surely disconnected
and so definitely almost surely not Hamiltonian. In order to show that G(n, p) is almost surely
Hamiltonian for large enough p we might hope to calculate the expected number of Hamiltonian
cycles in G(n, p), show that it is large, and also calculate the variance and show that is it
(relatively) small. However, it turns out that the variance in this case is too large for Chebyshev’s
inequality to give us the result we want. Instead we will have to use a more subtle argument.
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7.2 Posá’s Rotation-Extension Technique

We introduce in this section a useful technique due to Posá that he used to prove the threshold
for Hamiltonicity in G(n, p).

Given a graph G and a vertex x0 ∈ V (G) suppose that P = x0x1 . . . xk is a longest path
in G starting at x0. Given an edge (xk, xi) ∈ E(G) a rotation of P is a new path P ′ =
x0x1 . . . xixkxk−1 . . . xi+1. We say that a path P ′ is a transform of P if it can be obatined from
P by a sequence of rotations. Let U be the set of endvertices of all possible transforms of P and
let

N = {xi : {xi+1, xi−1} ∩ U 6= ∅}
be the set of neighbours of this set in P . Finally let R = V (P ) \ (U ∪ N) be the rest of the
vertices in P .

Note that, since by assumption P is a longest path, the neighbourhood of U is a subset of
V (P ). Posá observed that in fact it had to be a subset of U ∪N

Lemma 7.4. Let G be a graph, x0 ∈ V (G) and P a longest path in G starting at x0. If U,N
and R are defined as above then there are no edges in G between U and R.

Proof. Suppose x ∈ U and (x, y) ∈ E(G). Then there is some transform of Px of P ending at
x. Since we have (x, y) ∈ E(G), there is some transform Pz ending at a vertex z which is a
neighbour of y on Px.

If (y, z) were in E(P ), then y ∈ N . Otherwise one of the rotations that formed the trans-
formation from P to Px must have deleted an edge (y, w) ∈ E(P ). If we look at the first time
this happened during the transformation from P to Px, then either y or w will have become the
endpoint of one of the intermediate transformations. Therefore y ∈ U or N . Hence for every
x ∈ U , N(x) ⊂ U ∪N .

We note then that,

U ∪N(U) ⊂ U ∪N = U ∪ {xk−1}
⋃

xj∈U,j 6=k
{xj−1, xj+1}.

Hence |U ∪ N(U)| ≤ 3|U | − 1. That is, in some ways U has small ‘expansion’. We will show
that in a sufficiently dense random graph, all ‘small’ subsets have large expansion and so, in
particular, U must be large.

Lemma 7.5. Suppose c is sufficiently large and p = c log (n)/n. Then almost surely in G(n, p)
every subset U ⊂ V (G) with |U | ≤ n/4 satisfies

|U ∪N(U)| ≥ 3|U |.

In particular the property that some set U fails to satisfy this property is less then n−2.

Proof. We consider the probability q that there exists a set U of k vertices and a set W of
n−3k+ 1 vertices, with 1 ≤ k ≤ n/4 such that there are no edges between U and W . Note that
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if there is a subset U ⊂ V (G) with |U | ≤ n/4 and |U ∪N(U)| < 3|U | − 1 then there is a subset
W of V (G) \ (U ∪N(U)) of size n− 3|U |+ 1 such that there are no edges between U and W .

For each such pair (U,W ) the probability there are no U −W edges is

(1− p)k(n−3k+1).

Therefore by the union bound, the probability that such a pair of sets exist is at most

q =

n
4∑

k=1

(
n

k

)(
n− k

n− 3k + 1

)(
1− c log (n)

n

)k(n−3k+1)

=

n
4∑

k=1

(
n

k

)(
n− k
2k − 1

)(
1− c log (n)

n

)k(n−3k+1)

≤

n
4∑

k=1

n3kexp

(
−c log (n)

n
k(n− 3k + 1)

)
.

. Since n− 3k + 1 ≥ n/4 we can conclude that, if c ≥ 24

q ≤

n
4∑

k=1

n3kn−c
k
4

≤

n
4∑

k=1

n3kn−6k

≤ n

4
n−3 ≤ n−2 → 0.

.

Therefore if c is large enough then almost surely no such pair exists. Therefore almost surely
G(n, p) satisfies the required property.

Finally we can use this to show that, if p = c log (n)/n with c sufficiently large then, almost
surely G contains a Hamiltonian path.

Lemma 7.6. Suppose c is sufficiently large and p = c log (n)/n. Then almost surely in G(n, p)
contains a Hamiltonian path.

Proof. For a fixed vertex x we want to estimate the probability that every longest path in G(n, p)
contains x. If the probability that this doesn’t happen for any particular vertex is o(1/n) then
the probability that it doesn’t happen for any vertex is o(1) and so almost surely every longest
path in G(n, p) contains every vertex. In particular every maximal path would be a Hamiltonian
path.

So, given x we let G(x) be the graph on n− 1 vertices obtained by deleting x from G(n, p).
Note that G(x) has the same distribution as G(n − 1, p). We choose a longest path in G(x),
P = x0x1 . . . xk.

We note that, if x can extend some transform of P to a longer path then there is a longer
path in G(n, p) than in G(x). However if that is the case then every longest path in G(n, p)
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must contain x, since otherwise it would be in G(x). Therefore the probability that x is not
contained in every longest path in G is less than the probability that x does not extend some
transform of the path P .

Note that by Lemma 7.5 almost surely G(x) is such that U ⊂ V (G(x)) with |U | ≤ (n− 1)/4
satisfies

|U ∪N(U)| ≥ 3|U |.
Let us call a graph which does good. If this is the case then, since we have shown that in a
longest path P the set of endpoints of possible rotations U satisfies |U ∪ N(U)| ≤ 3|U | − 1, it
follows that |U | > (n− 1)/4

Therefore, given that G(x) is good, the probability that x does not extend some transform of
the path P is less than the probability of the non-existence of at least (n− 1)/4 edges between
x and U , each of which is independent of the event that G(x) is good, which is

(1− p)
n−1
4 ≤ e−

n−1
4

c log (n)
n ≤ n−

c
5 .

Therefore we see that, if Ax is the event that x is contained in every longest path,

P(Ax doesn’t happen) ≤ P(Ax doesn’t happen |G(x)is good) + P(G(x) isn’t good)

≤ n−
c
5 + n−2 = o(n−1).

for c large enough. Hence, by the union bound,

P( Some Ax doesn’t happen) ≤
∑
x

P(Ax doesn’t happen) ≤
∑
x

o(n−1) = o(1).

Therefore almost surely every longest path is a Hamiltonian path, and so G(n, p) contains a
Hamiltonian path as claimed.

SO, almost surely G will have a Hamiltonian path, but how can we change this path into
a cycle? The following lemma shows that, if U (for the Hamiltonian path) is large, there are
many edges we could add to G to form a Hamiltonian cycle.

Lemma 7.7. Let G be a connected graph. Suppose that the longest path in G has length k ≥ 2,
G contains no cycles of length k+1 and for some u ∈ N we have that for every subset U ⊂ V (G)
with |U | < u

|U ∪N(U)| ≥ 3|U |.
Then there are at least u2/2 non-edges in G whose addition forms a k + 1 cycle in G.

Proof. Let P = x0x1 . . . xk be a longest path and let U,N,R be defined as above. Then every
x0 − U edge creates a cycle of length k + 1. Note also that, as before

|U ∪N(U)| ≤ 3|U | − 1
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and so, by assumption, |U | ≥ u. Consider a subset {y1, y2, . . . , yu} ⊂ U . For each yi there is
some path Pi of length k from x0 to yi. Considering these paths as starting at yi, we let Yi be
the set of endvertices of transforms of Pi. By the same argument as before we have that |Yi| ≥ u
for each i, and also any edge between Yi and yi forms a cycle of length k + 1. Hence none of
these u2/2 edges are in G, and they are the claimed set of edges whose additions forms a k + 1
cycle in G.

7.3 Hamiltonicty Threshold

We now have the tools necessary to prove the main result of this chapter. The main part of
the proof remaining is to show the existence of a Hamiltonian cycle when p(n) = ω(log (n)/n).
We already know that when p(n) = c log (n)/n for large enough c then G(n, p) almost surely
contains a Hamiltonian path and satisfies the condition of Lemma 7.7 for a large u, and so, if
G(n, p) does not contain a Hamiltonian cycle then there are a large number of non-edges whose
addition would form a Hamiltonian cycle in G(n, p)

One useful idea in the proof, which appears in many proofs, is to pick two random graphs
G(n, p1) and G(n, p2) and let H = G(n, p1) ∪ G(n, p2) be the union of the two graphs. It is a
simple a exercise to show that H is distributed as G(n, q) for q = p1 + p2 − p1p2. We can think
of the process as a two step exposure of the edges in G(n, q).

In this case we pick p1 = c log (n)/n to guarantee that G(n, p1) contains a Hamiltonian
path and there exists a large number of edges not in G(n, p1) whose addition would form a
Hamiltonian cycle. We then pick p2 large enough that almost surely we must pick one of those
edges. Hence almost surely in G(n, p1)∪G(n, p2) there is a Hamiltonian cycle, and so the same
holds true for G(n, q).

This technique is sometimes called sprinkling, we can think of it as picking G(n, p1) and then
‘sprinkling’ some extra edges on top, with a fixed probability.

Theorem 7.8. r(n) = log (n)/n is a threshold function for the event that G(n, p) is Hamilto-
nian.

Proof. We note that if p(n) = o(r(n)) then by Theorem 7.3G(n, p) is almost surely not connected
and so almost surely not Hamiltonian.

We also note that, since the property of containing a Hamiltonian cycle is monotone, if
G(n, p) almost surely contains a Hamiltonian cycle for some p(n) = O(log (n)/n), then the same
will be true for all p(n) = ω(log (n)/n).

So let us take p(n) = 25 log n/n. We choose G(n, p) by picking G(n, p1) and G(n, p2) as
before, with p1 = 24 log n/n and

p2 =
p− p1

1− p1
.

Here we have just chosen p2 so that p = p1 + p2 − p1p2, all we will use is that p2 ≥ log (n)/n.

We have by Lemma 7.6 and Lemma 7.5 that almost surely G(n, p1) contains a Hamiltonian
path P and also almost surely G(n, p1) satisfies the conditions of Lemma 7.7 with u = n/4.
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Hence almost surely there is either a Hamiltonian cycle in G(n, p1) already, or there exists a
set of n2/32 non-edges F ⊂ E(G(n, p1))c whose addition would form a Hamiltonian cycle in
G(n, p1).

We now expose the edges in G(n, p2). The probability that none of these n2/32 edges appear
in G(n, p2) is

P(F ∩ E(G(n, p2)) = ∅) = (1− p2)|F | ≤ e−p
n2

32 ≤ n−
n
32 → 0

.

So almost surely G(n, p2) will contain at least one edge from F , and so almost surely G(n, p)
will contain a Hamiltonian cycle.

As with Theorem 7.3 one can prove that much sharper threshold exists for Hamiltonicity in
G(n, p). It has been shown, by Bollobás and independently Komlós and Szemerédi that there
is a sharp additive threshold for Hamiltonicty, that is, if ω(n) is a function tending to infinity
arbitrarily slowly then

• p(n) = (log (n) + log (log (n))− ω(n))/n then almost surely G(n, p) satisfies δ(G) ≤ 1;

• if p(n) = (log (n)+log (log (n))+ω(n))/n then almost surelyG(n, p) contains a Hamiltonian
cycle.

We note that, quite amazingly, similarly to how the threshold for connectivity coincides with
the threshold for having minimal degree 1, the threshold for Hamiltonicity coincides with the
threshold for having minimal degree 2, clearly a necessary condition.
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8 Strong Concentration

8.1 Motivation

Let us consider, as a motivating question, what we expect the maximum degree of the random
graph G(n, 1/2) to be. It appears to be a complicated variable, it is not even clear how to
compute it’s expectation. For any particular vertex, the expected degree is d = (n − 1)/2, but
this doesn’t tell us much about the maximum.

Suppose however we could show that the probability that the degree of any given vertex
exceeds d by at least t is o(1/n), for some suitably chosen t. Then we could conclude by the
union bound that the probability that the maximum degree is more than d+ t is o(1), that is,
almost surely the maximum degree is less that d+ t.

In this case, and in many application of the probabilistic method, we want to bound prob-
abilities of the for P(X ≥ E(X) + t) for some random variable X, or often more generally
P(|X − E(X)| ≥ t) . We call bounds for such probabilities tail estimates, since we think of
them as the probability that X lies in the tail of it’s distribution. If we can show that with
high probability |X − E(X)| ≤ t, where t is considerably smaller than E(X), we say that X is
concentrated about its expectation.

Chebyshev’s inequality is a very general result of this type, which holds for all random
variables with finite mean. However it is quite weak, especially if we want to deal with many
random variables simultaneously. For example Chebyshev’s inequality tells us that

P(|X − E(X)| ≥ t) ≤ Var(X)

t2
.

If we let X be the degree of a fixed vertex in G(n, 1/2) we have that X is distributed as
a binomial random variable B(n − 1, 1/2), and so Var(X) = (n − 1)/4. But then for the tail
probability to be o(1/n) we would need to apply Chebyshev’s with t >> n, and so we would
only get a bound on the probability of deviations of size ω(n) which isn’t useful at all.

However we will see for this particular X, and in fact a large class of similar random variables,
a much better inequality holds with 1/t2 replaced by the exponentially small bound 2e−t

2/2.
This would already by sufficient to conclude that the maximum degree of G(n, 1/2) is quite
tightly concentrated about its expectation (in fact, as we shall see, that it almost never exceeds
n/2 +O(

√
n log (n))).

8.2 The Chernoff Bound

In the previous example the degree of a vertex in G(n, 1/2) was the sum of n − 1 mutually
independent random variables which took the values 0 and 1, each with probability 1/2. For
ease of presentation we will consider a similar situation, except the variables will take values
1 and −1, so that the expectation is 0. Results for the original setting can be recovered by a
simple re-scaling. The following result is often called Chernoff’s inequality or the Chernoff bound

44



(although Chernoff proved a different inequality that is less useful and the following theorem
(and the ingenious proof) is due to Bernstein).

Theorem 8.1. Let X1, X2, . . . Xn be independent random variables taking the values 1 and −1,
each with probability 1/2. Let X = X1 +X2 + . . .+Xn. Then, for any t ≥ 0,

P(X ≥ t) < e−
t2

2n and P(X ≤ −t) < e−
t2

2n .

Proof. Note that we can write down an explicit formula for P(X ≥ t) in terms of binomial coef-
ficients, and it would be possible to prove the result by a careful estimation of these quantities.
However the idea in this proof is not only much simpler, but is applicable in a lots of other cases
where explicit formulas are not available.

We will just prove the first inequality, the second follows by symmetry. The key idea is to
consider instead of X the random variable Y = eλX where λ > 0 is some real number that we
will pick later. We have that P(X ≥ t) = P(Y ≥ eλt) and by Markov’s inequality

P(Y ≥ eλt) ≤ E(Y )

eλt
.

However we can calculate

E(Y ) = E
(
Eλ(

∑
iXi)

)
= E

(∏
i

eλXi

)
=
∏
i

E
(
eλXi

)
by the independence of the Xi. Hence

E(Y ) ≤
(
eλ + e−λ

2

)n
= (cosh(λ))2

However

cosh(x) = 1 +
x2

2!
+
x4

4!
+ . . . ≤ 1 +

x2

2
+

(x
2

2 )2

2!
+ . . . = e

x2

2

Hence,

E(Y ) < e
nλ2

2

So we have

P(Y ≥ eλt) < e
nλ2

2

eλt
= e

nλ2

2
−λt.

Since this holds for all λ > 0 we can in particular take λ = t/n (which also happens to be
the value minimising the above quantity) to see that

P(X ≥ t) < e−
t2

2n .
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We see that it follows immediately from the Chernoff bound that the maximum degree of
G(n, 1/2) is tightly concentrated around it’s expectation.

Theorem 8.2. The maximum degree of G(n, 1/2) is almost surely n/2 +O(
√
n log (n)).

Proof. For each v ∈ V let Dv be the random variable which counts the degree of v. If we let Xe

be the indicator random variable of the event that e is an edge, we have that Dv =
∑

v∈eXe.
We define Ye = 2Xe − 1, so that Ye takes the values 1 and −1 each with probability 1/2, and
let D̂v =

∑
v∈e Ye so that D̂v = 2Dv − (n− 1). We apply Theorem 8.1 to the random variables

{Ye : v ∈ e} with t = 2
√
n log (n) to see that

P(|D̂v|) > 2
√
n log (n)) < 2e

− 4n log (n)
2(n−1) < 2e−2 log (n) =

2

n2
.

Therefore, for each v we have that

P
(
|Dv −

n− 1

2
| >

√
n log (n)

)
= P(|D̂v| > 2

√
n log (n)) <

2

n2
.

Hence by the union bound we have that

P
(
|Dv −

n− 1

2
| ≤

√
n log (n) for all v

)
≥ 1− 2

n
→ 1

and so almost surely the maximum degree of G(n, 1/2) is n/2 +O
(√

n log (n)
)

In general we often want to apply this sort of reasoning to slightly more general class of
random variables. A very similar proof to that as in Theorem 8.1 gives the following theorem
for bounded random variables.

Theorem 8.3. Let X1, X2, . . . , Xn be independent random variables, each taking values in [0, 1],
let X = X1 +X2 + . . .+Xn and let σ2 = Var(X) =

∑
i Var(Xi). Then for any t ≥ 0

P(X ≥ E(X) + t) < e
− t2

2(σ2+ t
3 ) and P(X ≤ E(X)− t) < e

− t2

2(σ2+ t
3 ) .

In particular we can take X to a binomial random variable B(n, p) for p 6= 1/2, where
Var(X) = np(1− p), which is often useful in applications. For example we can use this to prove
good lower bounds on the diameter of G(n, p) for certain ranges of p.

Definition. For any two vertices x and y in a connected graph G we define the distance between
x and y, dist(x, y), to be the length of the shortest path between x and y. The diameter of a
graph G is the maximum distance between any pair of vertices, and the radius is the minimum
distance r such that there exists a vertex x such that dist(x, y) ≤ r for all y ∈ G.

Theorem 8.4. Let d ≥ 2 be fixed. Suppose c > 0 and pdnd−1 = log (n2/c). Then almost surely
G(n, p) has diameter at least d.
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Proof. For some v ∈ V let us denote by Nk(v) the set of vertices whose distance in G is exactly
k from v. We will show that, almost surely for 0 ≤ k < d, the size of the Nk(v) is o(n), and so
there must be (1 − o(1))n vertices of distance at least d away from v. Specifically we want to
show that almost surely |Nk(v)| ≤ (2np)k.

If we know the size of N1(v), N2(v), . . . , Nk−1(v), then |Nk(v)| is distributed as a bino-
mial random variable, since each point in V \

⋃k−1
i=1 Ni(v) is in Nk(v) with probability 1 −

(1 − p)|Nk−1(v)|. Let us define Ai to be the event that |Ni(v)| ≤ (2np)i and condition on the
events A1, A2, . . . , Ak−1. For each possible value of |Nk−1(v)| conditioned on Ak−1 we have that
|Nk(v)| ∼ B(m, q) where m < n and q = 1− (1− p)|Nk−1(v)| ≤ p|Nk−1(v)| ≤ p(2pn)k−1.

Therefore we have that, conditioned on A1, A2, . . . , Ak−1, Nk(v) as a random variable is
bounded above by some random variable Y distributed as Bin(n, p(2pn)k−1) on the same prob-
ability space. Therefore the probability that Nk(v) is large can be bounded above by the
probability that Y is large, which we can estimate using the generalised Chernoff’s bound. We
have that

µ = E(Y ) = np(2pn)k−1 and Var(Y ) ≤ µ.

So we can say that

P
(
|Nk(v)| ≥ (2np)k |A1, A2, . . . , Ak−1

)
≤ P (|Y − E(Y )| ≥ µ)

≤ e
− µ2

2(µ+
µ
3 ) = e−

3
8
µ

≤ e−
3
8

2k−1(np)k .

Note that we have that

np = n
1
d

(
log

(
n2

c

)) 1
d

and so,

(np)k ≥ np = ω(n
1
d )

Hence

P
(
|Nk(v)| ≥ (2np)k |A1, A2, . . . , Ak−1

)
= o(n−1).

The claim then follows by observing that for any v,

P

(
d−1⋃
k=1

Nk(v) = [n]

)
≤

d−1∑
k=1

P(Ak |A1, A2, . . . , Ak−1) = o(n−1),
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and so with high probability not only is the diameter of G at least d, but, by the union bound,
for every vertex v there is some vertex w at distance at least d from v, that is, even the radius
of G is at least d.

We note that the above theorem is close to tight, and mention for the sake of completeness
how the parameter c affects the diameter of G(n, p) (and to explain why we mentioned it at all).

Theorem 8.5. Let d ≥ 2 be fixed. Suppose c > 0 and pdnd−1 = log (n2/c). Then (as n → ∞)
with probability e−c/2 the diameter of G(n, p) is d and with probability 1− e−c/2 the diameter is
d+ 1.

8.3 Combinatorial Discrepancy

Consider a general set system (V,F) where V = [n] is the ground set and F is a family of
subsets of [n]. Suppose we want to 2-colour F , say in colours red and blue, such that colouring
is ‘balanced’ in each member of F , that is, each F ∈ F contains about as many blue points as
red points.

This is clearly not always possible, since if we let F = 2[n] then some set of size ≥ n/2 will
be monochromatic (as will all its subsets). In what situations can we say more? It will be
convient to think of the two colouring, rather than as a map χ : V → {0, 1}, as instead a map
χ : V → {−1,+1}. Then for any F ∈ F we can define

χ(F ) =
∑
i∈F

χ(i)

and see that χ(F ) is the difference between the number of ‘red’ and ‘blue’ points in F . We
define the discrepancy of F with respect to χ by

discχ(F) = max
F∈F
|χ(F )|

and the discrepancy of F to be

disc(F) = min
χ

discχ(F).

Using Chernoff’s bound we can say that, if |F| is not too large, then the discrepancy is not
much larger than

√
n.

Theorem 8.6. Let (V,F) be a set system such that |V | = n and |F| = m. Then if the maximum
size of a set F ∈ F is s

disc(F) ≤
√

2s log (2m).

In particular, for any F
disc(F) ≤

√
2n log (2m).
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Proof. We choose a colouring χ : V → {−1,+1} randomly by choosing χ(v) for each v ∈ V
independently and uniformly at random. For F ∈ F we have that χ(F ) is the sum of |F |
independent random ±1 variables. Therefore, by Theorem 8.1, for any t ≥ 0

P (|χ(F )| ≥ t) < 2e
− t2

2|F | ≤ 2e−
t2

2s .

If we let t =
√

2s log (2m) we see that

P (|χ(F )| ≥ t) < 2e−
2s log (2m)

2s = 2e− log (2m) =
1

m
.

Therefore

P(discχ(F) ≤ t) = P

( ⋃
F∈F
|χ(F )| ≤ t

)
≥ 1−

∑
F∈F

P (|χ(F )| ≥ t) > 1− m

m
= 0

and so with a positive probability a random colouring is a witness that disc(F) ≤
√

2s log (2m).

8.4 A Lower Bound for the Binomial Distribution

Sometimes we also need a lower bound for probabilities like P(X ≥ E(X)+ t), that is we need to
know that the probability of a deviation of at least t is not too small. One can think of theorems
like Theorem 8.1 in terms of the central limit theorem. That is, a sum of many independent
random variables should approach a normal distribution. So the bounds in Theorem 8.1 and
Theorem 8.3 should not be too far from the actual probability.

Let us first prove a counterpart to the weaker Theorem 8.9, the proof of which is just an
exercise in elementary estimates.

Theorem 8.7. For n even, let X1, X2, . . . , Xn be independent random variables taking the values
1 and −1, each with probability 1/2. Let X = X1 +X2 + . . .+Xn. Then we have, for any integer
t ∈ [0, n/8],

P (X ≥ 2t) ≥ 1

15
e−

16t2

n ,

Proof. Let us write n = 2m. We can estimate the probability that X ≥ t by counting the
number of events in the probability space (of size 2n) where X ≥ t, and so
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P (X ≥ 2t) = 2−2m
m∑
j=t

(
2m

m+ j

)

≥ 2−2m
2t−1∑
j=t

(
2m

m+ j

)

= 2−2m
2t−1∑
j=t

(
2m

m

)
m

m+ j
.
m− 1

m+ j − 1
. . .

m− j + 1

m+ 1

≥ 1

2
√
m

2t−1∑
j=t

j∏
i=1

(
1− j

m+ i

)
(using

(
2m

m

)
≥ 22m

2
√
m

)

≥ t

2
√
m

(
1− 2t

m

)2t

≥ t

2
√
m
e−

8t2

m (since 1− x ≥ e−2x for 0 ≤ x ≤ 1

2
)

Where the last inequality is only true for t ≤ n/8. When t ≥
√
m/4, the last expression is at

least
1

8
e−

16t2

n .

For 0 ≤ t <
√
m/4, we have that

P(X ≥ 2t) ≥ P
(
X ≥ 2

(√
m

4

))
≥ 1

8
e−

1
2 ≥ 1

15
.

Thus the bound holds for all t ≤ n/8. We note that no real effort has been made to optimise
the constants.

We can use this lower bound to show that the upper bound of O(
√
n log (2m)) for the

discrepancy of a family of size m on a set |V | = n is nearly the best possible for a wide range of
m.

Theorem 8.8. For any n,m ∈ N such that 15n ≤ m ≤ 2
n
8 there exists a set system (V,F) such

that |V | = n and |F| = m such that

disc(F) ≥ Ω

(√
n log

( m

15n

))
.

Proof. We consider a random set system F = {F1, F2, . . . , Fm} on the ground set [n] where we
choose each Fi by including each x ∈ [n] in Fi independently with probability 1/2. Note that
P(Fi = Fj) = 2−n and so, for m ≤ 2

n
8 we have by a union bound that almost surely this produces

m distinct sets. We will assume n is even to apply Theorem 8.7, obviously in that lemma we
only restrict to the case that n is even for ease of presentation, and a similar bound there (and
so here) will hold with n odd.

Let us consider a fixed colouring χ : [n] → {−1,+1}. Suppose that χ([n]) = n − 2a, and so
the number of x ∈ [n] such that χ(x) = 1 is n− a. A point x such that χ(x) = 1 contributes 1
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to χ(Fi) if x ∈ Fi and 0 otherwise. Since x ∈ Fi with probability 1/2 the contribution of x to
χ(Fi) is a random variable taking the values 0 and 1 each with probability 1/2. Similarly the
number of x ∈ [n] such that χ(x) = −1 is a and the contribution of each such x to χ(Fi) is a
random taking the values 0 and −1 each with probability 1/2.

Therefore χ(Fi), as a random variable, can be expressed of the sum of n independent random
variables X1, X2, . . . , Xn−a and Y1, Y2, . . . , Ya where the Xi take values 0 and 1 with probability
1/2 and the Yi takes values −1 and 0 with probability 1/2. So if we re-scale we see that (2Xi−1)
and (2Yi+1) are independent random variables taking the values 1 and −1 each with probability
1/2. Hence if we define

X := 2χ(Fi)− (n− 2a) =
n−a∑
i=1

(2Xi − 1) +
a∑
j=1

(2Yi + 1)

we can apply Theorem 8.7 to see that, for a ≤ n/2

P(|χ(Fi)| ≥ t) ≥ P(X ≥ 2t− (n− 2a)) ≥ P(X ≥ 2t) ≥ 1

15
e−

16t2

n

provided that t < n/8. By symmetry we get a similar bound for a > n/2 (for example by
considering −χ). Therefore for any of the possible 2n different colouring χ we have, since the
sets Fi were picked independently,

P(discχ(F) ≤ t) ≤
(

1− 1

15
e−

16t2

n

)m
≤ e−

m
15
e−

16t2
n

If we take

t =

√
n

16
log
( m

15n

)
,

which satisfies t ≤ n/8 as long as m ≤ 2n/8, then this last expression becomes e−n < 2−n.
Hence by the union bound with positive probability the discrepancy of F is at least t for every
colouring χ.

We note that for m ≥ n2 say, the lower and upper bounds are the same up to a constant.
When m and n are close there is a gap, and it turns out that it is the upper bound that can be
improved (by a complicated probabilistic argument) to match the order of the lower bound.

A general result, which we state without proof, in the other direction is

Theorem 8.9. Let X be a sum of independent random variables, each taking values in [0, 1],
and let σ =

√
Var(X) ≥ 200. Then for all t ∈ [0, σ2/100], we have

P(X ≥ E(X) + t) ≥ ce−
t2

3σ2

for a suitable constant c > 0.
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9 The Lovás Local Lemma

9.1 The Local Lemma

In a typical probabilistic proof of a combinatorial result, one has to show that the probability
of a certain event is positive. As we have seen the in the last section, many of these proofs tend
to show more, that the probability is not only positive but very large, often tending to 1 as the
‘dimension’ of the problem considered grows.

On the other hand, there is a trivial case in which one can show that a certain event holds
with positive, even though very small, probability. Suppose we have n mutually independent
events Ai, each of which hold with probability p > 0, then the probability that they all hold
simultaneously is at least pn, which is positive, but may be exponentially small in n.

It is natural to expect that something similar will be true if the events are not entirely
independent, but only ‘mostly independent’, for some sensible definition of ‘mostly independent’.
One way to define it is as follows.

Definition. Let A1, A2, . . . , An be events in an arbitrary probability space. A directed graph
D = ([n], E)is called a dependency digraph for the events A1, A2, . . . , An if for all i the event Ai
is mutually independent of all the events {Aj : (i, j) 6∈ D}.

So for example when A1, A2, . . . , An are all mutually independent a dependency graph is the
empty graph En. Note that we are not simply insisting that Ai is independent of Aj if (i, j) 6∈ E,
since then we could take an undirected graph, the property we are checking is stronger, and so
it’s not sufficient to simply put an edge in D between every pair of dependent events.

We might expect that there are some natural conditions which tell us that when the graph
is sparse enough, there is some positive probability that all the events hold. In the following, to
follow standard notations, we will think of the events which all happen with small probability
as being the negation of a set of events Ai, which we will denote by Ai. The condition we ask
for the graph to satisfy will seem complicated, but will be informed by the proof.

We will use the following elementary result twice in the proof

Lemma 9.1.

P(A|B ∩ C) =
P(A ∩B|C
P(B|C)

.

Proof. By definition of conditional probability

P(A|B ∩ C) =
P(A ∩B ∩ C)

P(B ∩ C

=
P(A ∩B ∩ C)

P(C
· P(C)

P(B ∩ C

=
P(A ∩B|C
P(B|C)

.
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Lemma 9.2 (The Lovás Local Lemma). Let A1, A2, . . . , An be events in an arbitrary probability
space. Suppose that D = ([n], E) is a dependency digraph for the events {Ai}ni=1 and there exists
x1, x2, . . . xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

(i,j)∈E

(1− xj)

for all i ∈ [n]. Then

P

(
n⋂
i=1

Ai

)
≥

n∏
i=1

(1− xi).

In particular, with positive probability no event Ai holds.

Proof. We want to show that with positive probability none of the events Ai occur. This will be
impossible if an occurence of some combination of the Aj made it very likely that some other
Ai held. So we first try to bound the probability of each Ai, given that some of the other events
do not occur.

We claim that for any S ⊂ [n] and i 6∈ S

P

Ai | ⋂
j∈S

Aj

 ≤ xi.
We do so by inducting on |S|. When S = ∅ we have from the assumption of the lemma that

P(Ai) ≤ xi
∏

(i,j)∈E

(1− xj) ≤ xi.

Now let us suppose that the claim holds for every S′ with |S′| < |S| and set S1 = {j ∈ S :
(i, j) ∈ E}, S2 = S \ S1. In particular Ai is mutually independent of the set {Aj : j ∈ S2}. We
first note that if S1 = ∅ then Ai is independent of ∩j∈SAj and so the claim holds as before. So
we can assume S1 6= ∅. We have by Lemma 9.1

P

Ai | ⋂
j∈S

Aj

 =
P
(
Ai ∩

⋂
j∈S1

Aj |
⋂
l∈S2

Al

)
P
(⋂

j∈S1
Aj |

⋂
l∈S2

Al

) .

We bound the numerator by the fact that Ai is mutually independent of the events {Al : l ∈
S2} and so
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P

Ai ∩ ⋂
j∈S1

Aj |
⋂
l∈S2

Al

 ≤ P

Ai | ⋂
l∈S2

Al


= P(Ai) ≤ xi

∏
(i,j)∈E

(1− xj).

The denominator on the other hand can be bounded by the induction hypothesis. Indeed,
let S1 = {j1, j2, . . . , jr} then, again using Lemma 9.1

P

 ⋂
j∈S1

Aj |
⋂
l∈S2

Al

 = P

Aj1 ∩ . . . ∩Ajr | ⋂
l∈S2

Al


= P

Aj1 | ⋂
l∈S2

Al

× P

Aj2 |Aj1 ∩ ⋂
l∈S2

Al

× . . .
. . .× P

Ajr |Aj1 ∩ . . . ∩Ajr−1 ∩
⋂
l∈S2

Al


≥ (1− xj1)(1− xj2) . . . (1− xjr)

≥
∏

(i,j)∈E

(1− xj).

Combining these two inequalities we see that, as claimed

P

Ai | ⋂
j∈S

Aj

 ≤ xi.
The assertion of the lemma now follows easily, as

P

(
n⋂
i=1

Ai

)
= (1− P (A1))

(
1− P

(
A2|A1

))
. . .

(
1− P

(
An|

n−1⋂
i=1

Ai

))

≥
n∏
i=1

(1− xi).

Often in application the setsAi satisfy certain symmetric conditions which allow us to simplify
the (rather complicated looking) conditions in Lemma 9.2.
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Corollary 9.3. [Symmetric Local Lemma] Let A1, A2, . . . , An be events in an arbitrary proba-
bility space. Suppose that each event Ai is mutually independent of a set of all but at most d
of the other Aj (equivalently there is a dependency digraph with all outdegrees less than d), and
that P(Ai) ≤ p for all i. If ep(d+ 1) ≤ 1 then

P

(
n⋂
i=1

Ai

)
> 0.

Proof. If d = 0 then the events are mutually independent and the result follows trivially. Other-
wise let xi = 1/(d+ 1) < 1. There is a dependency digraph D = (V,E) such that all outdegrees
are less than d and so

xi
∏

(i,j)∈E

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d
.

Note that it is a simple check that

(
1− 1

d+ 1

)d
=

(
1 +

1

d

)−d
> e−1

and so

xi
∏

(i,j)∈E

(1− xj) >
1

e(d+ 1)
≥ p ≥ P(Ai).

Therefore by Lemma 9.2 the conclusion holds.

9.2 Ramsey Bounds for the last time

We can use the Local Lemma to get a slight (multiplicative) improvement to the lower bound
on the diagonal Ramsey numbers from Section 4.

Theorem 9.4. If

e

(
k

2

)(
n− 2

k − 2

)
21−(k2) < 1

then R(k, k) > n.

Proof. We consider a random two colouring of the edges of the graph Kn and for each S ⊂ [n]

with |S| = k let AS be the event that S is monochromatic. We have that P(AS) = 21−(k2) for
each S. We also have AS is mutually independent of the set of AT where S and T don’t share
an edge, and we can crudely bound above the number of those remaining by

(
k
2

)(
n−2
k−2

)
− 1 . We

then apply Corollary 9.3 with p = 21−(k2) and d =
(
k
2

)(
n−2
k−2

)
− 1 to see that the claim holds.

A short computation shows that this gives R(k, k) >
(√

2/e
)

(1 + o(1))k2k/2, which is only

an improvement of
√

2 from our previous bound. This is not too surprising, since we expect the
Local Lemma to be at it’s most powerful when the dependencies between the events are rare,
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which is not the case here. Indeed, there are a total number of K =
(
n
k

)
events considered and

the maximum outdegree d of the dependency digraph is ∼
(
k
2

)(
n−2
k−2

)
. For large k and larger n,

which is the case of interest for us, we have that d > K1−o(1/k).

In contrast if we consider small sets, for example k = 3, we see that out of the K =
(
n
3

)
3-sets,

each shares an edge with only 3(n − 2) ∼ K1/3 of the other sets. Therefore, we might expect
the Local Lemma to give better improvements for the off-diagonal Ramsey numbers R(k, l) for
small fixed l. Indeed, by a straightforward application of Lemma 9.2 it is possible to show that
for any k, n, if there exists p ∈ (0, 1) and x, y ∈ [0, 1) such that

p3 ≤ x(1− x)3n(1− y)(
n
k) and (1− p)(

k
2) ≤ y(1− x)

k2n
2 (1− y)(

n
k),

then R(k, 3) > n. It is a tedious (although elementary) computation to find the largest
possible k such that there is a choice of p, x and y, eventually showing that

R(k, 3) ≥ c k2

(log (k))2

for some constant c, which matches a lower bound of Erdős proved with a highly complicated
probabilistic argument, and is within a log factor of being best possible. A similar argument
shows that

R(k, 4) ≥ k
5
2

+o(1)

which is better than any known bound for R(k, 4) known without using the Local Lemma.

9.3 Directed Cycles

In this section we present another application of Corollary 9.3

Theorem 9.5. Let D = (V,E) be a directed graph with minimum outdegree δ and maximum
indegree ∆. Then for any k ∈ N such that

k ≤ δ

1 + log (1 + δ∆)
,

D contains a directed cycle of length divisible by k.

Proof. In order to simplify the computations we first delete all but δ outgoing edges from each
vertex in V to find a subgragh D′ = (V,E′) of D where each outdegree is exactly δ, and the
maximum indegree is still less than ∆. Note that any cycle in D′ is also in D.

We take a random k-colouring of the vertices of D, that is we pick a function f : V → [k] by
choosing f(v) for each v ∈ V independently and uniformly from [k]. For each v ∈ V we let

N+(v) = {w : (v, w) ∈ E′}
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be the set of outneighbours of v and let Av be the event that no vertex in N+(v) is coloured by
f(v) + 1 (mod k).

Note that the probability of Av is p = (1− 1/k)δ for each v ∈ V . We claim that each Av is
mutually independent of the set of events Aw such that N+(v) ∩ (N+(w) ∪ {w}) = ∅. That is,
Av is mutually independent of the set eof events Aw such that w is not an outneighbour of v
and w and v have no common outneighbour. Note that v may still be a successor of w. Indeed,
if we condition on a specific value of f on V \N+(v) (even on v itself), this doesn’t change the
probability of Av, but it determines Aw for all such w.

The number d of vertices w not satisfying the above conditions is at most δ+ δ(∆−1) = δ∆.
Therefore

ep(d+ 1) ≤ e(1− 1

k
)δ(δ∆ + 1) ≤ e1− δ

k (δ∆ + 1) ≤ 1,

and so by the Local Lemma there is a colouring such that no event Av holds, that is for every
vertex v ∈ V there is a w ∈ N+(v) such that f(w) = f(v)+1 mod(k). So, starting at any vertex
let us generate a sequence of vertices v0, v1, . . . such that (vi, vi+1) ∈ E′ and f(vi+1) = f(vi) + 1
mod(k). Such a sequence must eventually contain a directed cycle, and the colouring guarantees
that the length of the cycle will be divisible by k.

9.4 The Linear Aboricity of Graphs

Definition. Given a graph G the aboricity of G, a(G), is the minimum number of forests into
which the edge set E(G) can be partitioned. A linear forest is a forest in which every component
is a path, and the linear aboricity of a graph, la(G), is the minimum number of linear forests
into which the edge set E(G) can be partitioned.

The following simple conjecture is longstanding.

Conjecture 9.6 (The Linear Aboricity Conjecture). Let G be a d-regular graph. Then

la(G) =

⌈
d+ 1

2

⌉
.

Note that since every d-regular graph on n vertices has nd/2 edges and every linear forest has
at most n− 1 edges we have that la(G) > d/2, and so the content of the conjecture is to show
that every d-regular graph can indeed by decomposed into a small number of forests. Also, since
every graph of maximum degree ∆ can be embedded into a ∆-regular graph, the conjecture is
equivalent to the statement that every G with satisfies la(G) ≤ d(∆(G) + 1)/2e.

Much work has been done towards the conjecture and the best known bound without a
probabilistic argument was that la(G) . 3∆(G)/5. .

It will be convenient to deduce the result from a corresponding result for directed graphs.
A d-regular digragph is a directed graph in which the indegree and outdegree of every vertex is
precisely d. A linear directed forest is a directed graph in which every connected component is
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a directed path and the dilinear aboricity of a directed graph D, which we denote by dla(D), is
the minimum number of linear directed forests into which the edge set E(G) can be partitioned.
We then have the directed version of the Linear Aboricity Conjecture.

Conjecture 9.7. Let D be a d-regular digraph. Then

dla(D) = d+ 1.

Note that since the edges of any connected undirected 2d-regular graph can be oriented along
an Euler cycle, so the the resulting digraph is d-regular, Conjecture 9.7 for d implies Conjecture
9.6 for 2d.

It is a simple exercise to show that a graph G contains an independent set of size at least
n/(∆(G)+1). We will require for our proof a lemma that tells us that, at the price of decreasing
the size by a constant factor, we can find a large independent set with additional structure

Lemma 9.8. Let H = (V,E) be a graph with maximum degree ∆, and let V = V1∪V2∪ . . .∪Vr
be a partition of V into r pairwise disjoint sets. Suppose that |Vi| ≥ 2e∆ for each i ∈ [r]. Then
there is an independent set W ⊂ V that contains a vertex from each Vi.

Proof. Without loss of generality we may assume that |Vi| = d2e∆e = g for each i. We pick a
single vertex from each Vi independently and uniformly at random and let W be the union of
these vertices. We will show that with positive probability W is independent.

For each edge f ∈ H let Af be the event that both ends of f are contained in W . Clearly
P(Af ) ≤ 1

g2
. Moreover, if the endpoints of f are in Vi and Vj respectively then Af is mutually

independent of all the events Ae such that the endpoints of e do not lie in Vi ∪ Vj .

Therefore there is a dependency digraph for the events Af in which the maximum degree is
< 2g∆. Since e.2g∆.(1/g2) = 2e∆/g < 1 we have by Corollary 9.3 that with positive probability
none of the events Af hold. However this means that W is an independent set containing a
vertex from each Vi.

We note at this point that Lemma 9.8 enables us to prove Conjecture 9.7 for digraphs with
no short directed cycle. The directed girth of a graph is the minimum length of a directed cycle
in that graph.

Theorem 9.9. Let D = (V,E) be a d-regular directed graph with directed girth g ≥ 8ed. Then

dla(D) = d+ 1.

Proof. We first use Hall’s theorem to decompose D into d-pairwise disjoint 1-regular spanning
subgraphs, D1, D2, . . . , Dd. Strictly we form a bipartite graph on (A,B) where A = B = V and
let (a, b) be an edge if and only if (a, b) is a directed edge in D. Then this bipartite graph is
d-regular and so we can decompose it into d pefect matchings, each of which correspond to a
1-regular spanning directed subgraph.
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Each Di is a union of vertex disjoint directed cycles, Ci1 , Ci2 , . . . Ciri . Let E1, E2, . . . , Er the
edge sets of each of these cycles, taken over each 1 ≤ i ≤ d. We have that {Ei} is a partition of
the edge set of D and by the girth condition each |Ei| ≥ g ≥ 8ed.

We consider the (undirected) line graph L of D, that is the graph whose vertex set is E and
two edges are adjacent if and only if they share a vertex. Note that L is 4d−2 regular and {Ei}
is now a partition of the vertex set of L. Since |Ei| ≥ 8ed ≥ 2e(4d− 2) we can apply Lemma 9.8
to L to find an independent set in L containing an element of each Ei. However this corresponds
to a matching M in D containing at least one edge from each cycle Cij .

Hence if we consider the subgraphs D1 \M,D2 \M, . . . ,Dd \M,M we see that each Di \M
is a linear directed forest, and M is a matching, and between them they cover the edges of D.
Hence

dla(D) ≤ d+ 1.

Finally we note that, as before, D has |V |d edges and each directed linear forest can have at
most |V | − 1 edges, and so

dla(D) ≥ |V |d
|V | − 1

> d.

Therefore dla(D) = d+ 1 as claimed.

In order to prove the theorem for general digraphs we show that we can decompose almost
all of the edges of a regular digraph into a relatively small number of regular digraphs with large
girth. To do so we need the following technical lemma, which also uses the Local Lemma in its
proof.

Lemma 9.10. Let D = (V,E) be a d-regular directed graph, where d is sufficiently large, and
let p be an integer such that 10

√
d ≤ p ≤ 20

√
d. Then there is a p-colouring of V , f : V → [p],

such that, for each v ∈ V and each i ∈ [p] the number

N+(v, i) = |{u ∈ V : (v, u) ∈ E and f(u) = i}|

and
N−(v, i) = |{u ∈ V : (u, v) ∈ E and f(u) = i}|

satisfy ∣∣∣∣N+(v, i)− d

p

∣∣∣∣ , ∣∣∣∣N−(v, i)− d

p

∣∣∣∣ ≤ 3

√
d

p
log (d).

Proof. We pick a random p-colouring f : V → [p] by choosing f(v) for each v ∈ V independently
and uniformly at random from [p]. For each v ∈ V and i ∈ [p] let A+

v,i be the event that

∣∣∣∣N+(v, i)− d

p

∣∣∣∣ > 3

√
d

p
log (d)
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and similarly for A−v,i . We have that N+(v, i) is a binomial random variable with expectation

d/p, so if we let t = 3
√

d
p log (d) then, by Theorem 8.3 we have that

P(A+
v,i) < e

− t2

2( dp+ t
3 ) ≤ e

−
9 dp log (d)

3 dp ≤ d−3

and similarly for A−v,i. Clearly each event A+
v,i, A

−
v,i is mutually independent of all the events

A+
u,i, A

−
u,i such that u and v do not have a common neighbour. Therefore there is a dependency

digraph for these events with maximum degree ≤ (2d2)p. Since

e
1

d3
((2d)2p+ 1) ≤ 1

we have that by Corollary 9.3 there is a non-zero probability that none of the events A+
v,i, A

−
v,i

happen. Therefore there is a colouring f satisfying the required properties.

We are now ready to argue the general case.

Theorem 9.11. There exists a constant c > 0 such that for every d-regular digraph D

dla(D) ≤ d+ cd
3
4 (log (d))

1
2 .

Proof. Let D = (V,E) be an arbitrary d-regular digraph. Let p be a prime satisfying 10
√
d ≤

p ≤ 20
√
d (which exists by Bertrand’s postulate). By Lemma 9.10 there is a p-colouring of V , f ,

such that the conclusions of the lemma hold. For each i ∈ [p] let Di = (V,Ei) be the spanning
subgraph of D defined by

Ei = {(u, v) ∈ E : , f(v) ≡ f(u) + i mod(p)}.

By assumption we have that the maximum outdegree ∆+
i and the maximum indegree ∆−i of Gi

are at most

d

p
+ 3

√
d

p
log (d).

Moreover, for each i 6= p, the length of every directed cycle in Gi is divisible by p, and so
each Gi has directed girth gi ≥ p. It is a simple exercise to see that Gi can be completed, by
adding vertices and edges, to a ∆i-regular digraph with ∆i = max (∆+

i ,∆
−
i ), which has the

same directed girth gi. Since gi > 8e∆i (for all sufficiently large d) we have that by Theorem
9.9 that, for each i 6= p

dla(Gi) ≤ ∆i + 1 ≤ d

p
+ 3

√
d

p
log (d) + 1.

To bound the size of Gp we see that, since Gp can be partitioned into ∆p disjoint 1-regular
spanning subgraphs, we can split each of these into two linear directed forest to get that

dla(Gp) ≤ 2∆p ≤ 2
d

p
+ 6

√
d

p
log (d).
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These last two inequalities together with the fact that 10
√
d ≤ p ≤ 20

√
d imply that

dla(G) ≤ (p− 1)

(
d

p
+ 3

√
d

p
log (d) + 1

)
+ 2

d

p
+ 6

√
d

p
log (d)

= d+
d

p
+ (p− 1) + 3(p− 1)

√
d

p
log (d) + 6

√
d

p
log (d)

≤ d+ cp

√
d

p
log (d)

≤ d+ cd
3
4 (log (d))

1
2

Since any 2d-regular graph G can be oriented so the resulting digraph is d-regular (and since
every 2d− 1-regular G is a subgraph of a 2d-regular graph), we have as an immediate corollary
of Theorem 9.11.

Corollary 9.12. There exists a constant c > 0 such that for every d-regular graph G

la(G) ≤ d

2
+ cd

3
4 (log (d))

1
2 .
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10 Martingales and Strong Concentration

10.1 The Azuma-Hoeffding Inequality

The strong concentration bounds we obtained in Section 8 only applied to sums of random
variables which were independent. This is quite a strong condition to ask for, and in this
section we will prove strong concentration results of a similar nature that do not need to rely
on independence. Suppose we play a game where a fair coin is continually flipped and each
time it comes up heads you win Â£1 and each times it comes up tails you lose Â£1. The
expected change in your bankroll for each flip is 0 and, by the chernoff bounds, we know that
as the number of flips gets very large it is exponentially unlikely that you end up with a large
difference between the money you start with and the money you ended with.

Now suppose that instead that instead of a fair coin flip at each stage an arbitrary opponent
can choose a bet to make, that can depend on the result of the previous bets, with only the
added condition that the bet is fair, that is the expected change in your bankroll at each stage
is 0.

Let Zi denote the outcome of the ith bet and let Xi be your bankroll after that bet. Let us
make the following definition:

Definition. Let Z and X be random variables on the same probability space. We define the
random variable E(X|σ(Z)) by

E(X|σ(Z))(ω) = E(X|Z = Z(ω)).

Then, the preceding property can be written as E(Xi |σ(Z1, Z2, . . . , Zi−1)) = Xi−1. Although
the variable Xi is not independent of the previous variables, it is still true that, whatever their
values were, we don’t expect our bankroll to change from each bet. If the value of each bet is
also small, say bounded by some constant number, then we should expect a similar bound to
hold.

Motivated by this we define:

Definition. Let Z1, Z2, . . . , Zn and X0, X1, . . . , Xn be sequences of random variables on the
same probability space such that Xi is determined by {Z1, Z2, . . . , Zi} and, for all i,

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = Xi−1.

Then (Xi) is called a martingale with respect to (Zi).

The actual definition of a martingale is slightly more complicated. One normally takes a
sequence of σ-fields {∅,Σ} = Σ0 ⊆ Σ1 ⊆ . . . ⊆ Σn, which we call a filtration on a probability
space and a sequence (Xi) of random variables such that Xi is measurable with respect to Σi.
Then we call (Xi) a martingale with respect to (Σi) if E(Xi |Σi−1) = Xi−1.

In the finite case these Σis correspond to partitions of Ω. We can think of a martingale as
being a gradual exposure of a random variable Xn on the probability space (Ω,Σn,P) by taking
finer and finer estimates. Each Xi tells me what I expect Xn to be on average over a set of
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events A which lies in Σi and partition Ω. In the next step Σi+1 splits each A into some smaller
sets of events, and the values of Xi+1 on these smaller sets will tell me more precisely what Xn

looks likes. However in order for this to be consistent we want that the average of Xi+1 over the
sets which partition A should be the same as Xi(A), since we’re thinking of both as representing
in some way the expectation we have of Xn.

In the first step we have that X0 is just a constant function whose value is the expected value
of Xn over the entire space, and in the last step we just have Xn.

In applications, which motivates the previous definition, we usually take these filtrations as
being defined by a set of random variables (Zi), and so Σi corresponds to the partition of Ω into
sets which agree on all Z1, Z2, . . . , Zi. We are then thinking about the space (Ω,Σn,P) almost
as a product space over the smaller spaces defined by the random variables (Zi). If the Zi were
independent this would be a product space in a more traditional sense.

One reason martingale methods can be applied to so many different cases is that we can form
a martingale from essentially any random variable.

Lemma 10.1. Let A and (Zi) be random variables on the same probability space. Then Xi =
E(A |σ(Z1, Z2, . . . , Zi)) is a martingale with respect to (Zi).

Proof. Note firstly that Xi is determined by {Z1, Z2, . . . , Zi}. Also, for all i we have that

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = E(E(A |σ(Z1, Z2, . . . , Zi)) |σ(Z1, Z2, . . . , Zi−1)).

However it is clear that the above expectation is, for given Z1, Z2, . . . , Zi−1, averaging over all
possible values of Zi the expected value of (A|Z1, Z2, . . . , Zi). Hence

E(Xi |σ(Z1, Z2, . . . , Zi−1)) = E(A |σ(Z1, Z2, . . . , Zi−1)) = Xi−1.

There are two very natural examples of martingales on graphs that we will want to apply the
results in this section to, the edge exposure martingale and the vertex exposure martingale. For
the first we take our underlying probability space to be G(n, p) and order the set of potential
edges (i, j) ∈ [n](2) arbitrarily as e1, e2, . . . , em, where m =

(
n
2

)
. We define the random variables

Zi to be the indicator function of the event that ei is an edge in G(n, p). Any graph theoretic
function f is some function of the random variables (Zi). Therefore if we consider the martingale
Xi = E(f |σ(Z1, Z2, . . . , Zi)) with respect to (Zi) we have that Xi is a martingale, X0 = E(f)
and Xn = f . We can think of this martingale as revealing the edges of G(n, p) one by one, for
any graph theoretic function the martingale at step i is the expected value of that function on
a random G(n, p), that agrees with the first i exposed edges (either being in or out).

For the vertex exposure martingale we take Zi ∈ {0, 1}i−1 to be the vector of indicators of
whether the edge between the vertex i and j < i is in G(n, p). Again for any graph theoretic
function f we can consider the corresponding martingale Xi = E(f |σ(Z1, Z2, . . . , Zi)). Similar
to before we can think of this martingale as revealing the vertices (and edges adjacent to them)
of G(n, p) one by one, for any graph theoretic function the martingale at step i is the expected
value of that function on a random G(n, p), that agrees with the first i exposed vertices. Note
that here we have X1 = E(f) in contrast to the previous example, since exposing the first vertex
gives no information, so the length of the martingale sequence here is really (n− 1).
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Our main tool will be the following concentration result for martingales known as Azuma’s
inequality, similar versions of which were proved concurrently by multiple authors including
Azuma, Hoeffding and Steiger.

Theorem 10.2 (The Azuma-Hoeffding Inequality). Let c1, . . . , cn > 0 and let (Xi)
n
0 be a mar-

tingale with respect to (Zi)
n
1 such |Xi −Xi−1| ≤ ci for all 1 ≤ i ≤ n then

P(Xn ≥ X0 + t) ≤ e−
t2

2σ2 and P(Xn ≤ X0 − t) ≤ e−
t2

2σ2

where σ2 =
∑n

i=1 c
2
i .

Proof. We will need a simple technical lemma

Lemma 10.3. Let Y be a random variable which takes values in [−1,+1] such that E(Y ) = 0.
Then for any t ≥ 0

E(etY ) ≤ e
t2

2 .

Proof. We first note that for t ≥ 0 the function etx is convex and so, for any x ∈ [−1,+1]

etx ≤ 1

2
(1 + x)et +

1

2
(1− x)e−t.

Therefore by taking expectations of both sides we see

E(etY ) ≤ 1

2
et +

1

2
e−t

= 1 +
t2

4
+
t4

4!
+ . . .

=
∑ t2n

(2n)!
≤
∑ t2n

2n(n)!

=
∑(

t2

2

)n
(n)!

= e
t2

2 .

From this point the proof is similar in nature to that of the Chernoff bound. For any λ > 0
we have

P(Xn −X0 ≥ t) = P
(
eλ(Xn−X0) ≥ eλt

)
.

Therefore by Markov’s inequality we see
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P
(
eλ(Xn−X0) ≥ eλt

)
≤ e−λtE

(
eλ(Xn−X0)

)
= e−λtE

(
eλ(

∑n
i=1Xi−Xi−1)

)
= e−λtE

(
E
(
eλ(

∑n
i=1Xi−Xi−1) |σ(Z1, Z2, . . . Zn−1)

))

HoweverX1, . . . Xn−1 are determined by Z1, Z2, . . . , Zn−1 and so (
∑n−1

i=1 Xi−Xi−1|σ(Z1, Z2, . . . Zn−1))
is constant. Therefore we can take that term outside the inner expectation to see that

P(Xn −X0 ≥ t) ≤ e−λtE
(
eλ(

∑n−1
i=1 Xi−Xi−1)E

(
eλ(Xn−Xn−1) |σ(Z1, Z2, . . . Zn−1)

))
However now we can bound the inner expectation by noting that, |Xn−Xn−1| ≤ cn and E(Xn−
Xn−1 |σ(Z1, Z2, . . . Zn−1)) = 0. Therefore by the technical lemma, applied to (Xn−X0)/cn, we
have that

P(Xn −X0 ≥ t) ≤ e−λte
λ2c2n

2 E
(
eλ((

∑n−1
i=1 Xi−Xi−1)

)
= e−λte

λ2c2n
2 E

(
eλ(Xn−1−X0)

)
However we can now handle the term in the expectation inductively in the same way to get

P(Xn −X0 ≥ t) ≤ e−λte
λ2

2

∑n
i=1 c

2
i .

Since the above holds for any λ > 0 we optimise by taking λ = t/(
∑
c2
i ), which gives

P(Xn −X0 ≥ t) ≤ e
− t2

2
∑
c2
i .

Often we want to be able to deduce the boundedness condition |Xi −Xi−1| ≤ ci from more
local conditions. That is, since we can think of Xn as being a function f(Z1, Z2, . . . , Zn), then
if changing any single co-ordinate doesn’t affect the value of X very much, we would expect the
differences to be bounded, since the range of Xi−Xi−1 will depend on how much our expectation
of Xn changes once we learn what Zi is (as long the later Zj are not too dependent on this value).

In the particular case of graphs we say a graph theoretic functions f is edge Lipschitz if
whenever H and H ′ differ in only one edge then |f(H)−f(H ′)| ≤ 1. Equivalently, if we consider
f as a function of the variables f(Z1, Z2, . . . , Zn) then we require that changing one coordinate
does not change f by more than 1. Similarly it is vertex Lipschitz if whenever H and H ′ differ
at only one vertex |f(H)− f(H ′)| ≤ 1.

Lemma 10.4. For any graph theoretic function f , if f is edge Lipschitz then the corresponding
edge exposure martingale satisfies |Xi −Xi−1| ≤ 1 and similarly if f is vertex Lipschtiz.

Proof. We first note that in both cases the corresponding variables (Zi) are all mutually inde-
pendent. The proof of this lemma involves a clever trick called the duplication trick. For any i
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let us consider a random variable Z ′i which has the same distribution as Zi, but is independent
of it.

Xi−1 = E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))

= E(f(Z1, . . . , Z
′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))

= E(f(Z1, . . . , Z
′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1, Zi))

Here we have replaced Zi by Z ′i in the calculation of Xi−1 so that we can condition on Zi.
The reason for this becomes clear when we look at

|Xi −Xi−1| = |E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi))− E(f(Z1, . . . , Zi, . . . , Zn) |σ(Z1, Z2, . . . , Zi−1))|
= E(f(Z1, . . . , Zi, . . . , Zn)− f(Z1, . . . , Z

′
i, . . . , Zn) |σ(Z1, Z2, . . . , Zi))|

≤ 1

Where the last inequality holds by the Lipshitz condition on any particular event, and so
holds in the average case.

Combining Lemma 10.4 and Theorem 10.2 for a Lipschitz graph function f (and it’s as-
sociated martingale) tells us that the difference between Xn and X0, which are f and E(f)
respectively, is quite small. In particular we can often say that a function is quite tightly
concentrated around it’s mean (even when we don’t know what the mean is).

10.2 The Chromatic Number of a Dense Random Graph

We note that the chromatic number of a graph χ(G) is an edge Lipschitz function, it is a simple
check that if we add or remove an edge from a graph it can change the chromatic number by
at most one. However applying Theorem 10.2 to the edge exposure martingale will not tell us
much. Indeed the Azuma-Hoeffding inequality, applied with ci = 1, tells us that

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ e−
t2

2m

where m =
(
n
2

)
∼ n2 is the number of possible edges in G(n, p). So,nto have the right hand side

→ 0 we need t = ω(n). However χ only takes values in [n], so in this case saying it is almost
surely within ω(n) of it’s expectation is not very useful.

However we can instead use the vertex exposure martingale. Again it is a simple check that
χ is also a vertex Lipschitz function. In this case combining Lemma 10.4 and Theorem 10.2
gives us a better bound, first due to Shamir and Spencer

Theorem 10.5. For any n and p and for all t ≥ 0
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P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ e−
t2

2(n−1) .

Proof. As noted, χ is a vertex Lipschitz function. So by Lemma 10.4 we can apply Theorem
10.2 to the associated vertex exposure martingale with ci = 1 to conclude that, for all t ≥ 0

P(|χ(G(n, p))− E(χ(G(n, p))| ≥ t) ≤ e−
t2

2(n−1) .

Now we can take t = ω(
√
n) to see that χ(G(n, p)) is ‘tightly’ concentrated about its expec-

tation, although we still don’t know what it’s expectation is.

Let us restrict attention to the case p = 1/2 for ease of presentation, although it is not too
hard to adapt the following arguments to cover the case of any fixed p.

Since any colour class must be an independent set, for any graph G,

χ(G) ≥ n

α(G)
.

It is possible to use the second moment method to show that for any ε < 0 almost surely
α(G(n, 1/2)) is between (2 − ε) log2 (n) and 2 log2 (n). However the calculation of the second
moment is particular lengthy and messy, so we will just state it. For those interested a proof
can be found in Alon and Spencer. Therefore we have that almost surely

χ(G(n, 1/2)) ≥ (1 + o(1))
n

2 log2 (n)
.

The corresponding upper bound was an open question for almost 25 years.

Note that in G(n, 1/2) there is a natural equivalence between cliques and independent sets.
In what follows we will consider cliques instead of independent sets, but only because ”k-clique”
is easier to type than ”an independent set of size k”. Let

f(k) =

(
n

k

)
2−(k2)

and let k0 be such that f(k0 − 1) > 1 > f(k0), so that k0 is the smallest integer such that the
expected number of k0 cliques in G(n, 1/2) is less than 1. This will be around 2 log2 (n) and, as
we just stated without proof, almost surely G(n, 1/2) will have a clique of almost this size.

However, in the course of the proof, we will need an explicit bound on the probability that
G(n, 1/2) contains a clique of size around k0. So, we will first show that with very high proba-
bility the size of the largest clique in G(n, 1/2) is at least k1 = k0−4. It is not too hard to check
that, as a function of n, f(k1)→∞, and in fact more precisely that f(k1) = n3+o(1), which we
shall use later.
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In order to show that with high probability G(n, 1/2) contains a clique of size around k1 we
could look at the random variable X which counts the number of cliques of that size. Since we
know the expected number of cliques of this size is around f(k1) = n3+o(1) we might hope to
use a tight concentration result to show that the probability that X is non-zero is exponentially
small. However there is a problem in that the function X is not edge or vertex lipschitz, and so
we can’t apply Theorem 10.2.

We get around this in a clever way by first defining an auxilliary random varibale Y , which
counts the maximal size of a family of edge disjoint cliques of size k1 in G(n, 1/2) (that is, the
number of cliques it contains, not the union of their sizes). G will have no k1-clique if and only
if Y = 0 and since Y only counts families of edge disjoint k1-cliques, changing one edge can only
change the value of Y by one, and so it is edge Lipschitz. This will let us use Azuma-Hoeffding
to say that Y is tightly concentrated about it’s expectation. In order to then deduce that Y 6= 0
with high probability we will need to bound below its expectation, which is still slightly messy.

Lemma 10.6.

E(Y ) ≥ (1 + o(1))
n2

4k4
1

.

Proof. Let K be the collection of all k1-cliques in G(n, 1/2), so that E(|K|) = f(k1) = µ. We
will need to count the number of pairs of cliques A,B ∈ K whose edge sets intersect. If we let
W denote the number of such pairs we see that

E(W ) = µ

k1−2∑
i=2

(
k1

i

)(
n− k1

k1 − i

)
2−((k12 )−(i2)).

It is an involved, but elementary exercise, to show that this sum in dominated by the leading
term i = 2. In this case we have, since k1 << n,

E(W )

µ2
∼ 1

µ

(
k1

2

)(
n− k1

k1 − 2

)
2−((k12 )−1)

∼ 2

(
k1
2

)(
n−k1
k1−2

)(
n
k1

)
∼ k2

1

(
n

k1−2

)(
n
k1

)
∼ k2

1

k2
1

n2

∼ k4
1

n2

up to constant factors.

We choose a random set X from K by including each k1-clique with probability q, where we
will optimise q later. The expected size of X is just qE(|K|) and the expected number of pairs in
X which have non empty intersection is q2E(W ). Hence by the alteration method, if we remove
one clique from each bad pair we are left with a set X ′ such that X ′ is a union of disjoint cliques
and
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E(|X ′|) ≥ qE(|K|)− q2E(W )

≥ qµ− q2µ2 k
4
1

n2

We apply the above with q ∼ n2/2µk4
1. Note that, since µ = f(k1) ∼ n3+o(1), q < 1. Hence

E(Y ) ≥ E(|X ′|) ≥ n2

4k4
1

Lemma 10.7.
P(ω(G(n, 1/2)) < k1) = e−n

2+o(1)
.

Proof. We apply the Azuma-Hoeffding inequality to the edge exposure martingale associated
with Y . Since Y is edge Lipschitz we have that

P(Y − E(Y ) ≤ −E(Y )) ≤ e
−E(Y )2

2(n2)

≤ e
−(1+o(1)) n4

16k81

1
n2

≤ e
−(1+o(1)) 1

16
n2

k81

= e−n
2+o(1)

We now have all the ingredients to present the following proof, due to Bollbás

Theorem 10.8. Almost surely

χ(G(n, 1/2)) ≤ (1 + o(1))
n

2 log2 (n)
.

Proof. The idea of the proof is as follows. If we consider the restriction of G(n, 1/2) to a subset
S of a smaller, but still quite large size, say |S| = m, then this subgraph will look like G(m, 1/2).

We can use Lemma 10.7 to say that almost surely this subgraph will contain a k1(m)-clique.
If the probability is sufficiently large, then we can conclude the same holds true for all subsets
of that size.

We can then produce a colouring greedily by picking independent sets of size k1(m) in
G(n, 1/2), and letting each be a colour classes, which we can do until there are less than m
vertices left.

If m can be chosen to be large enough that k1(m) ∼ k1(n), then we will use about the
right amount of colours in this process. Similarly, if m can be chosen to be small enough that
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m << n/k1(n), then if we colour the remaining vertices each by a different colour, it still won’t
affect the total number of colours we’ve used. Let’s get down to the details.

We set m = n/(log (n))2 (natural, not base 2). We let k1 = k1(m) = k0(m) − 4 as above
and note that k1(m) ∼ 2 log2 (m) ∼ 2 log2 (n). For any set S of size m we have the restriction
of G(n, 1/2) onto S is distributed as G(m, 1/2).

Therefore by Lemma 10.7 we have that

P (α (G(n, 1/2)|S) < k1) < e−m
2+o(1)

.

There are
(
n
m

)
< 2n = 2m

1+o(1)
such sets, and so by a union bound

P (α (G(n, 1/2)|S) < k1 for some m-set S) < 2m
1+o(1)

e−m
2+o(1)

= o(1).

So almost surely every set of m vertices contains an independent set of size k1. We then greedily
colour G(n, 1/2) by the process described above. We inductively choose independent subsets of
size k1 from the set of remaining vertices, by looking at a set of m vertices inside which almost
surely there is an independent set of size k1,, and give them a different colour until we have less
than m vertices left. We then colour each of the remaining vertices with a different colour each.
Since this produces a proper colouring we have that almost surely

χ(G(n, 1/2)) ≤ n

k1
+m

≤ (1 + o(1)
n

2 log2 (n)
+

n

log (n)2

≤ (1 + o(1)
n

2 log2 (n)
.

Therefore, combining this with the claimed lower bound we have that almost surely

χ(G(n, 1/2)) = (1 + o(1))
n

2 log2 (n)
.

Recall that we in fact know, by Theorem 10.5, that almost surely χ(G(n, 1/2)) is within
√
n

of it’s mean, which lies somewhere in this range.

10.3 The Chromatic Number of Sparse Random Graphs

In this section we prove a rather remarkable concentration result for the chromatic number of
G(n, p) where p = n−α for some fixed α > 5/6. In the previous section we showed the chromatic
number of a graph is almost always concentrated in a range of about

√
n values. When p is

sufficiently small we can in fact say much more, that almost always χ(G) takes one of at most
four values.
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Theorem 10.9. Let p = n−α for some fixed α > 5/6 then there exists some u = u(n, p) such
that almost surely

u ≤ χ(G(n, p)) ≤ u+ 3.

The proof of the theorem uses a result that was previously known, that asserts that, in the
range of p we’re looking at, if we look at a small subset of the vertices in G(n, p) then we can
always 3-colour the graph restricted to that subset.

Lemma 10.10. Let p = n−α for some fixed α > 5/6 and let c > 0. Then almost surely for
every subset S ⊂ [n] with |S| = c

√
n

χ(G(n, p)|S) ≤ 3.

Proof. Suppose there exists some set S such that |S| = s ≤ c
√
n which cannot be 3-coloured.

We can take without loss of generality such an S which is vertex minimal, and therefore we must
have that the minimum degree of G(n, p)|S) ≥ 3. Therefore the S must contain at least 3s/2
edges. We will show that the probability of the existence of such a subset is o(1), from which
the result will follow.

For each |S| = s ≤ c
√
n the probability that the subgraph contains at least 3s/2 edges is at

most

((s
2

)
3s
2

)
p

3s
2

by the union bound. Therefore, again by the union bound, the probability that some ‘bad’
subset of size ≤ c

√
n exists is at most

c
√
n∑

s=4

(
n

s

)((s
2

)
3s
2

)
p

3s
2 =

c
√
n∑

s=4

f(s).

Using the bound that
(
n
k

)
≤ (en/k)k we see that,

f(s) ≤
(en
s

)s(e(s2)
3s
2

) 3s
2

p
3s
2

≤
(en
s

)s (es
3

) 3s
2
n−

3αs
2

≤
(
en

s

(es
3

) 3
2
n−

3α
2

)s
≤
(
K1s

1
2n1− 3α

2

)s
≤
(
K2n

5
4
− 3α

2

)s
,
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for some constants K1 and K2. However, since α > 5/6 we have that 5
4 −

3α
2 < 0 and so the

last term is ((K2n
−ε)s for some ε > 0. Therefore

c
√
n∑

s=4

f(s) ≤
c
√
n∑

s=4

(K2n
−ε)s = o(1).

This Lemma tells us that, in any random graph in our range of p, if we can colour almost
all it’s vertices with u colours, then we can colour the rest of the graph using at most 3 more
colours. Using another clever choice of random variable, which will give us a vertex Lipschitz
martingale, we will see that, for a certain choice of u, we can almost surely colour all but c

√
n

of the vertices in G(n, p) with u colours.

Proof of Theorem 10.9. Let ε > 0 be arbitrarily small and let u = u(n, p, ε) be the smallest
integer such that

P(χ(G(n, p)) ≤ u) > ε.

We define a random variable Y to be the size of the smallest set of vertices S such that G(n, p)\S
can be u-coloured. We first note that changing a single vertex of G(n, p) can only change the
value of Y by at most one, and so Y is vertex Lipschitz. Therefore we can apply Theorem 10.2
to see that, for any t ≥ 0

P(Y ≥ E(Y ) + t
√
n− 1) < e−

t2

2 and P(Y ≤ E(Y )− t
√
n− 1) < e−

t2

2

We pick t such that e−t
2/2 = ε, and so both the tail events have probability less than ε.

However we note that Y = 0 if and only if G(n, p) itself can be u-coloured, however by definition
of u this happens with probability > ε. So

P(Y ≤ E(Y )− E(Y )) ≥ P(Y = 0) > ε.

Since the tail events are nested we much have that E(Y ) ≤ t
√
n− 1. But then, again by the

nestedness of the tail events,

P(Y ≥ 2t
√
n− 1) ≤ P(Y ≥ E(Y ) + t

√
n− 1) < ε

and so with probability at least 1 − ε we can remove a set of vertices of size 2t
√
n− 1 from

G(n, p) such that the remaining graph is u-colourable.

By Lemma 10.10, almost surely this set of vertices can be coloured using at most 3 new
colours, giving a colouring of G(n, p) using at most u+ 3 colours. Therefore with probability at
least 1− ε, G(n, p) can be (u+ 3)-coloured.

However by definition of u, with probability at least 1 − ε at least u colours are needed to
colour G, therefore
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P(u ≤ χ(G(n, p)) ≤ u+ 3) ≥ 1− 2ε.

We might be a little concerned that, u depended on ε and so we can’t simply let ε → 0 to
deduce the result. However it is clear that, once ε gets small enough it’s impossible that the
ranges for different ε don’t overlap, since it can’t happen almost surely that G(n, p) lies in two
disjoint sets. So after a certain point there are at most 3 possible values for u, one of which is
taken infinitely often, from which the result then follows.

Using similar techniques it as been shown that in fact, for any α > 1/2, χ(G(n, n−α)) is
concentrated on at most two values.

11 Talagrand’s Inequality

Another useful result that asserts strong concentration of a random variable is Talagrand’s in-
equality. Our previous results on strong concentration gave us an exponentially small bound
on the probability of deviations from the mean of suitably well behaved random variables. Our
notion of suitably well behaved was basically that it was close, or bounded by, some random
variable on a product space where in each co-ordinate the random variable was bounded. How-
ever the Azuma-Hoeffding inequality required that the deviations we considered be at least as
large as the square root of the dimension of this product space. Talagrands inequality gives us
a much stronger result for a similar class of random variables.

We will state just a special case of the equality, without proof, in a form which is useful for
applications. We first need to define formally the notion of a product space, which we will do
only for finite probability spaces to avoid using too much measure theory. The case for general
probability spaces is similar.

Definition. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be finite probability spaces. We let

Ω =
n∏
i=1

Ωi = {(ω1, ω2, . . . , ωi) : ωi ∈ Ωi for all i ∈ [n]}

be the product of the sets Ωi and define a probability measure P on 2Ω by defining the probability
of elementary events to be

P((ω1, ω2, . . . , ωi)) =
n∏
i=1

Pi(ωi)

and extending it to 2Ω in the obvious way. Then the product space (of {(Ωi,Σi,Pi) : i ∈ [n]})
is the probability space (Ω, 2Ω,P).

For example G(n, p) is the product of
(
n
2

)
identical probability spaces, each of which corre-

sponds to a possible edge of G(n, p). We note that, given a random variable on a product space,
there is a a natural martingale associated with this random variable given by ‘exposing’ each
co-ordinate in turn, the edge and vertex exposure martingales being examples of this.

Talagrand’s inequality is a very broad inequality about the concentration of measure in
product spaces. We consider a generalisation of the Hamming distance. This counts the number

73



of co-ordinates in which two ω, ω′ ∈ Ω differ. In other words, the distance is
∑

wi 6=w′i
1. We

can take a weighted version of this and consider, for any unit vector α ∈ Rn the α-Hamming
distance between ω and ω′ to be

dα(ω, ω′) =
∑
ωi 6=ω′i

αi.

Given a set A ⊂ Ω and a point ω for any α we can consider the α-Hamming distance between
ω and A.

dα(ω,A) = inf{d(ω, ω′) : ω′ ∈ A}.

We will think of ω as being far from A if it’s far in some α-Hamming distance, with α a unit
vector. That is, we define

d(ω,A) = sup
|α|=1

dα(ω,A).

Talagrand’s inequality is then the following

Theorem 11.1 (Talagrand’s Inequality). Let {(Ωi,Σi,Pi) : i ∈ [n]} be probability spaces and
let (Ω,Σ,P) be their product. If A,B ∈ Σ are such that d(ω,A) ≥ τ for all ω ∈ B, then

P(A)P(B) ≤ e−
τ2

4 .

Note that we can vary α for different points ω ∈ B, so it doesn’t even have to be ‘uniformly’
far from A. An equivalent formulation is to say that we are bounding P(A)P(At) where Aτ =
{ω : d(ω,A) ≥ τ}.

This doesn’t look a lot like the tail estimates we have from earlier in the course, however
with not too much work one can deduce the following as a corollary, which we may sometimes
refer to also as Talagrand’s inequality.

First let us make a few definitions

Definition. A random variable X : Ω → R is c-Lipschitz if changing just one co-ordinate can
change the value of X by at most c. Given some function f : N → N we say that X is f -
certifiable if whenever X(ω1, ω2, . . . , ωn) ≥ s there is a subset I ⊂ [n] of size |I| = f(s) such that
X is greater than s on the entire subspace

{(ω′1, ω′2, . . . , ω′n) : ω′i = ωi for all i ∈ I}.

To put it in words, X is f -certifiable if, whenever X takes a value bigger than s, you can
verify this by looking at just f(s) of it’s co-ordinates. Talagrand’s inequality tells us that, when a
c-Lipschitz random variable is f -certifiable for a suitably small f , then it is highly concentrated,
sometimes more concentrated than the Azuma-Hoeffding inequality implies.

Corollary 11.2. Let X be a c-Lipschitz random variable which is f -certifiable and let m be the
median of X (that is m is the unique real number such that P(X > m) ≤ 1/2 and P(X < m) ≤
1/2). Then for any t ≥ 0

P(X ≤ m− t) ≤ 2e
− t2

4c2f(m) and P(X ≥ m+ t) ≤ 2e
− t2

4c2f(m+t) .

Proof. Let us consider the two sets

A = {ω : X(ω) ≤ m− t} and B = {ω : X(ω) ≥ m}
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Since P(B) ≥ 1/2 by definition, if we can show that d(ω,A) ≥ τ for all ω ∈ B for some τ , then
we can use Theorem 11.1 to get a bound on the probability of A.

However, since X is f -certifiable, for every ω ∈ B there is some set I ⊂ [n] of size f(m)
such that X(ω′) ≥ m for every ω′ which agrees with ω on I. Then, since every ω′ ∈ A has
X(ω) ≤ m− t and changing the value of one co-ordinate can change the value of X by at most
c, it follows that every ω′ ∈ A must disagree with ω in at least t/c of the co-ordinates in I.

Hence, if we take α to be the unit vector with αi = 1/
√
|I| for all i ∈ I and 0 otherwise,

it follows that every ω has α-Hamming distance at least t/c
√
f(m) to every ω′ ∈ A. Hence,

d(ω,A) ≥ t/
√
f(m).

Hence, applying Theorem 11.1 tells us that

P(X ≤ m− t)P(X ≥ m) ≤ e−
t2

4c2f(m)

and so, since by definition P(X ≥ m) ≥ 1/2 we have that

P(X ≤ m− t) ≤ 2e
− t2

4c2f(m) .

The other inequality follows in a similar fashion.

Note that the two tail estimates are not necessarily symmetric. Looking at Corollary 11.2,
we see that we can get exponentially good bounds for the tail estimates when t >>

√
f(m).

Most importantly this doesn’t necessarily depend on the dimension of the product space we
live in, and so, when f(m) is small compared to n, we will get much better bounds than the
Azuma-Hoeffding inequality would give us.

Also, this theorem talks about a variable being concentrated about its median rather than
its mean, however, as the following lemma shows, in a lot of cases one can show the median
must be close to the expectation.

Lemma 11.3. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let X be a c-Lipschitz, f(s) = rs-certifiable random variable and let m be the median
of X. Then

|E(X)−m| ≤ 20c
√
rm.

11.1 Longest Increasing Subsequence

Suppose we pick a sequence x1, x2, . . . , xn ∈ [0, 1] independently and uniformly at random. If
we put the sequence in increasing order, xi1 < xi2 < . . . < xin , this defines a permutation of [n],
and it is not hard to check that the distribution we get by picking a permutation in this way is
also uniform.

Let us consider the random variable X which counts the longest increasing subsequence from
this sequence. What can we say about this random variable?
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Well, given some ordered subset of the xi, {xi1 , xi2 , . . . xik}, the probability that this forms
an ordered subsequence is simply 1/k! by symmetry. So the expected number of increasing
sequences of length k is just

(
n
k

)
/k! and so by Markov’s inequality , if we let Xk be the number

of increasing sequences of length k, we have that

P(X ≥ k) = P(Xk ≥ 1) ≤ E(Xk) =

(
n
k

)
k!
≤
(en
k

)k ( e
k

)k
=

(
e
√
n

k

)2k

.

Therefore if the median is the number m such that P(X ≥ m) = 1/2, we have that m ≤ 3
√
n,

since we know that

P(X ≥ 3
√
n) ≤

(e
3

)6
√
n
< 1/2.

However, a classical theorem of Erdős and Szekeres tells us that if we let Y be the length of
the largest decreasing subsequence then we always have that XY ≥ n (we have to be a little
careful since this talks about non-decreasing and non-increasing subsequences, but with high
probability no two xi take the same value). However, by symmetry we have that X and Y have
the same distribution and so, since P(X ≤ 3

√
n) ≥ 1/2 we must have that P(Y ≥ 1

3

√
n) ≥ 1/2

and so the median of X must satisfy

1

3

√
n ≤ m ≤ 3

√
n.

Now, the random variable X is clearly 1-Lipschitz, changing the value of any one xi can
only change the length of the largest increasing subsequence by 1, and also we have that X is
f -certifiable with f(s) = s. Indeed, to verify that X ≥ s we can simply look at the values of the
xi in an increasing subsequence of length s. Therefore by Theorem 11.1 we have

P(X ≤ m− t) ≤ 2e−
t2

4m andP(X ≥ m+ t) ≤ 2e
− t2

4(m+t) .

Since m ∼
√
n we can take t to be slighty larger than n1/4, say t = n1/4 log (n), to see that

with high probability X must lie in the interval [m− t,m+ t].

Let us compare this to the bound we would get from applying Theorem 10.2. Here we would
be considering the exposure martingale associated with X by exposing the values of each xi in
turn. Since the function is 1-Lipschitz we have by a similar argument to Lemma 10.4 that the
associated martingale satisfies |Xi − Xi−1| ≤ 1 and so by the Azuma-Hoeffding inequality we
have that

P(X ≥ E(X) + t) ≤ e−
t2

2n and P(X ≤ E(X)− t) ≤ e−
t2

n .

So in order to get tight concentration we would need to take t >> n1/2, which is not only
much worse than what Talagrand can give, it’s not especially useful since it follows from Lemma
11.3 that |E(X)−m| ≤ O(n

1
4 ) and not E(X) ∼ m ∼

√
n.

11.2 Chromatic Number of Graph Powers

Definition. Given a graph G and x, y ∈ V (G) let us define the distance between x and y,
distG(x, y), to be the length of the shortest path between them. Given a graph G the kth power
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of G, Gk is defined to be the graph with

V (Gk) = V (G) and E(Gk) = {(x, y) : distG(x, y) ≤ k}.

Suppose we have a graph G with maximum degree ∆(G) = d. What can we say about the
chromatic number of Gk?

A simple application of the greedy algorithm tells us that we can colour any graph H with
∆(H) + 1 colours, and since ∆(Gk) ≤ dk we have that χ(Gk) ≤ dk + 1. Brook’s theorem
tells us that for any graph which is not a cycle or complete, χ(H) beats this naive bound and
χ(H) ≤ ∆(H). Reasonably recently this result have been improved, first by Kim to show that

Theorem 11.4. Let H be such that g(H) ≥ 5, then χ(G) ≤ (1 + o(1))∆(H)/ log (∆(H))

and later Johansson showed

Theorem 11.5. Let H be such that g(H) ≥ 4 (that is, triangle-free), then χ(g) ≤ O
(
∆(H)/ log (∆(H))

)
Applying this to graph powers we see that, as long as G still has reasonably large girth

compared to k, then we get an improvement of a log factor over the naive bound for Gk as
well. The following result of Alon and Mohar tells us that if we fix g ≥ 3 and k, and allow the
maximum degree to be arbitrarily large, then there exist graphs achieving this bound.

Theorem 11.6. Let g ≥ 3 and k be fixed. Then for large enough d there exist graphs G with
g(G) ≥ g and ∆(G) ≤ d such that

χ(Gk) ≥ Ω

(
dk

log (d)

)
.

Proof. We want to construct such a graph by picking a random graph G(n, p) for suitable n and
p. Let p = d

2n so that the expected degree of each vertex is ∼ d/2. We first want to make sure
that our graph satisfies the conditions claimed on ∆(G) and g(G), to do that we will use the
alteration method.

It is a simple application of the chernoff bound that, for each vertex v ∈ V

P(d(v) ≥ d) < e−
d

100 .

(where no attempt has been made to optimise the constant, none at all). So, if we let Nbad be
the number of vertices with degree larger than d we see that

E(Nbad) < ne−
d

100 .

Hence, by Markov’s inequality

P(Nbad > 100ne−
d

100 ) ≤ 1

100
.
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(that is, is very small). Similarly if we look at the random variable C<g which counts the
number of cycles of size < g, we have, by a similar calculation as that in Section 4, that

E(C<g) =

g−1∑
i=1

(np)i =

g−1∑
i=1

(
d

2
)i < dg.

So again an application of Markov’s inequality tells us that

P(C<g > 100dg) <
1

100
.

Combining these two estimate we see that with probability at least 98/100, G(n, p) is such
that

Nbad < 100ne−
d
6 and C<g < 100dg

and so, since we are free to take d >> g and n >> d, we can remove a vertex from each small
cycles and delete all vertices of degree more than d to get a graph G′ with neither, which still
has (1 + o(1))n vertices.

We want to get a bound on the chromatic number of G′k, and similar to Section 4 we will
do so by bounding above the size of the largest independent set in G′k. So, since χ(G′k) ≥
|G′|/α(G′k) ≥ n/2α(G′k) we will need to show that, with positive probability, even after the
alterations we made

α(G′k) ≤ ckn
log (d)

dk

for some constant ck. For each subset U of that size we want to show that, even after we make
our alterations, there is still some edge in G′k inside U . To guarantee this we will show that with
a high probability we can find many vertex disjoint paths of length k between pairs of vertices in
U . Since each vertex we removed from the graph G(n, p) can be in at most one of these paths,
if there are sufficiently many we can conclude that U is still not independent in G′. So we will
prove the following auxiliary lemma.

Lemma 11.7. Let G(n, p) be chosen with p as above, the for an appropriate choice of constant
ck the following holds. For every subset U ⊂ V (G) of size

|U | = ckn
log (d)

dk
= x

let P be the random variable which counts the maximum size of a family of paths of length k
which lie in G(n, p) such that both endpoints lie in U , all the internal vertices of the paths lie
outside of U , and no two paths share a vertex except in U . Then almost surely

P ≥
c2
kn log (d)2

2k+6dk
.

Proof. If we let P ′ be the random variable which just counts the number of paths of length k
satisfying the first two conditions we see that

E(P ′) =

(
x

2

)
(n− x)(n− x− 1) . . . (n− x− k + 1)pk

> c2
kn

2 log (d)2

d2k

nk−1

4

dk

2knk

=
c2
kn log (d)2

2k+2dk
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As in Theorem 10.5 we want to say that the expected value of P is close to that of P ′ by
showing that the expected number of pairs of paths which are not vertex disjoint in this way
is small. If we let Q be the random variable which counts the pairs of paths which share an
internal vertex outside of U it is again a rather tedious calculation to show that the largest
contribution to Q comes from pairs of paths which share an endpoint and the neighbour of that
endpoint. The expected number of such pairs is at most

E(P ′)nk−2xpk−1 = E(P ′)
ck log (d)

2k−1d
<< E(P ′).

Therefore if we pick a random set of such paths, including each one with some fixed probability
q, the expected size of our collection is just qE(P ′) and the expected number of bad pairs is
q2E(Q) < q2E(P ′). Therefore by the alteration method we can find a collection such that when
we remove 1 path from each bad pair we still have at least (q − q2)E(P ′) left, and so we have
that, with q = 1/2

E(P ) ≥ 1

4
E(P ′) >

c2
kn log (d)2

2k+4dk
:= b.

If we define m to be the median of P we claim that m ≥ b/2. Indeed, if not, then both m and
20
√
km are less than b/2. However, since P counts the size of the largest set of paths of length

k satisfying certain conditions, including being edge disjoint, we have that P is 1-Lipschitz, that
is, changing any one edge can change P by at most 1. We also note that P is f -certifiable for
f(s) = ks. Hence, by Lemma 11.3

E(P ) ≤ m+ 20c
√
km < b

a contradiction.

Hence, since m ≥ b/2 it follows from Talagrands inequality that

P(P ≤ b/4) ≤ P(P ≤ m/2) ≤ 2e−
m
16k ≤ 2e−

b
32k .

Therefore,

P(P ≤ b

4
) ≤ 2e−

b
32k = 2exp

(
−
c2
kn log (d)2

2k+9kdk

)
.

Therefore, for any fixed U , we’ve showed that the probability that U has less than b/4
appropriate paths (which we note is the claimed number in the statement of the lemma), can
be bounded above by this quantity. If we can show that this quantity is small compared to the
total number of U of size x, the we could conclude the result of the lemma by the union bound.
Now the total number of such sets is(

n

x

)
≤
(en
x

)x
=

(
edk

ck log (d)

) ckn log (d)

dk

≤ exp

(
ckkn log (d)2

dk

)
.

Therefore if we choose ck such that

c2
k

2k+9k
> 2kck
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then with high probability for every such set U there will be at least the claimed number of
paths.

So, as we showed before, with probability at least 98/100, G(n, p) is such that

Nbad < 100ne−
d
6 and C<g < 10dg

and we also know that with high probability G(n, p) satisfies the conclusion of Lemma 11.7,
and hence with positive probability G(n, p) satisfies all three. Therefore there exists some graph
G′ satisfying all three conditions. From such a graph, let us delete a vertex from each cycle of
length less than g and delete each vertex of degree ≥ d. We therefore obtain a graph G such
that g(G) ≥ g and ∆(G) ≤ d and also

|G| ≥ n− 100(ne−
d
6 + dg) ≥ n

2
.

We also claim that α(Gk) ≤ x. Indeed, since G′ satisfied the conclusion of Lemma 11.7 we
know that each subset of V (G) of size x, when considered as a subset of V (G′), contained at
least

ckn log (d)2

2k+6dk

paths of length k, in G′, between vertices of U such that no internal vertices were inside U , or
in more than 1 path. Since we removed at most

100(ne−
d
6 + dg) <

ckn log (d)2

2k+6dk

vertices of G′ to form G, at least one of these paths is contained in G, and hence in Gk, U is
not independent.

Therefore G is a graph with g(G) ≥ g and ∆(G) ≤ d and

χ(Gk) ≥ |Gk|
α(Gk)

≥ n

2x
= Ω

(
dk

log (d)

)
.

11.3 Exceptional outcomes

Our previous concentration results have all relied on our random variables being c-Lipschitz for
some small enough c, when considered as functions on an underlying product probability space.
Whilst they can’t tell us anything if the function is not well behaved in this way, sometimes it
will be the case that the random variable is still be tightly concentrated.

Let us consider, as a motivating example, the random variable T which counts the number
of triangles in G(n, p). By a simple application of the first and second moment methods we
know that r(n) = 1/n is a threshold function for the event that G(n, p) contains a triangle. We
will consider the range where p = n−1+β for some small β > 0. Here, the expected number of
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triangles n3β will get arbitrarily large, we would like to be able to say that with high probability
the number of triangles is ‘close’ to that expectation.

As before we can think of G(n, p) as a product of
(
n
2

)
probability spaces on {0, 1}, and T as

a function on this space. However T is not very Lipschitz, indeed, adding or deleting a single
edge can change the number of triangles by as much as n − 2. Thinking in terms of Theorem
11.1, we have that T is f -certifiable where f(s) = 3s and we expect the median to be close to
the average which is E(T ) =

(
n
3

)
p3 ∼ 1

6n
3β (although this doesn’t follow from Lemma 11.3).

So to get a good bound on deviations of size smaller than E(T ), we would need to choose
t ≤ E such that

2e
− t2

12n2E(T )

is small. Since t ≤ E(T ) ∼ n3β, we would need β to be strictly larger than 2/3.

However it turns out that T will be tightly concentrated about it’s mean even when β is
much smaller. The intuitive reason that this should be true is that, whilst an edge can be in
many triangle, it’s very unlikely that any particular edge will be. For example the expected
number of triangles containing any particular edge is only n−1+2β, which is very small.

It might seem possible that a condition of this sort could be sufficient to prove concentration,
if the expected effect of each co-ordinate was small, however the following example shows us that
this is not the case.

Example. Let m = 4k, we will consider a probability space on {0, 1}m where each event

ω = (ω1, ω2, . . . , ωm) is such that the probability that ωi = 1 is, independently, p = m−
1
2 for

each i. We will consider the following function

f(ω1, ω2, . . . , ωm) = (ω1ω2 + ω2ω3 + . . .+ ω2k−1ω2k)(ω2k+1 + ω2k+2 + . . .+ ω4k).

Since the functions in the brackets are independent, by the linearity of expectation we see
that

E(f) = 2k2p3 =
1

8
m

1
2 .

What is the expected effect of each co-ordinate? Well, for ω1 we have that

|E(f |ω1 = 0)− E(f |ω1 = 1)| = |E(ω2((ω2k+1 + ω2k+2 + . . .+ ω4k))| = 2kp2 =
1

2
,

and similarly for ω2, . . . , ω2k. Doing a similar calculation for ω2k+1, . . . , ω4k gives an expected
effect of 1

4 .

However we note that the sum inside the second set of brackets is just a binomial random
variables and so by the Chernoff bound we know that with high probability it will close to it’s
expected value, of m

1
2 /2. The second bracket is also some binomial random variable, but on

top of that it’s always an integer and so with high probability f(t) is either 0, or larger than

m
1
2 /2 = 4E(f). Hence f is not tightly concentrated about it’s mean.

Instead, we will prove a generalisation of Talagrand’s inequality that excludes a small set Ω∗

of exceptional outcomes. Since these exceptional outcomes will (hopefully) allow us to reduce
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our dependence on how ‘Lipschitz’ T is, we will want to modify our definition of certifiable
somewhat.

Definition. Given an exceptional set Ω∗ ⊂ Ω and s, c > 0 we say that a random variable X
has (s, c)-certificates if for every t > 0 and every ω ∈ Ω \ Ω∗ there is an index set I of size at
most s so that X(ω′) > X(ω)− t for any ω′ ∈ Ω \ Ω∗ for which the ω and ω′ differ in less than
t/c co-ordinates.

Note that, if X is f -certifiable and c-Lipschitz and s is the maximum value of f over the
range of X, then it is easy to check that X has (s, c)-certificates. We will want to show the
following version of Talagrand’s inequality.

Theorem 11.8. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Suppose X is a random variable which has
(s, c)-certificates, let m be the median of X and let t ≥ 0. Then

P(|X −m| ≥ t) ≤ 4e−
t2

4c2s + 4P(Ω∗).

Proof. The same as the proof of Corollary 11.1. We consider the sets

A = {ω ∈ Ω \ Ω∗ : X(ω) ≤ m− t}, and

B = {ω ∈ Ω \ Ω∗ : X(ω) ≥ m}.

and use that fact that

P(X ≤ m− t)P(X ≥ m) ≤ P(A)P(B) + P(Ω∗).

By the same argument as Lemma 11.3, we can also deduce in this sitautation (as long as X
is bounded) that m is quite close to E(X).

Lemma 11.9. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Let X be a random variable which has
(s, c)-certificates, let m be the median of X and let M = max{ sup |X|, 1}. Then

|E(X)−m| ≤ 20c
√
s+ 20M2P(Ω∗).

Combining the two we get the following corollary.

Corollary 11.10. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their

product. Let Ω∗ ⊆ Ω be a set of exceptional events. Let X be a random variable which has
(s, c)-certificates, let m be the median of X and let M = max{ sup |X|, 1}. If P(Ω∗) ≤ M−2

then for t > 50c
√
s

P(|X − E(X)| ≥ t) ≤ 4e−
t2

16c2s + 4P(Ω∗).
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Proof. By Theorem 11.8 and 11.9 it follows that

P(|X − E(X)| ≥ t/2 + 20c
√
s+ 20M2P(Ω∗)) ≤ P(|X −m| ≥ t/2)

≤ 4e−
t2

16c2s + 4P(Ω∗).

If t > 50c
√
s and P(Ω∗) ≤M−2 then

t ≥ t/2 + (20c
√
s+ 20M2P(Ω∗)

and hence

P(|X − E(X)| ≥ t) ≤ 4e−
t2

16c2s + 4P(Ω∗).

Let us return to the question of the number of triangles in a random graph G(n, p), which
we denote by T . Recall that, using Talagrands inequality we can deduce that T is tightly
concentrated around its mean when p = n−1+β as long as β > 2/3. Recently multiple methods
have been developed which allow one to deduce concentration in such cases (where the ‘effect’
of changing a single coordinate may be large, but is expected to be quite small). For example
Warnke recently developed a method for dealing with such cases that can show concentration
when β > 1

5 . There is also a highly technical method of Kim and Vu which can deal with an
even larger range.

We will use how the previous results results to deduce concentration of T about its mean for
β even smaller than 2/3. For example, let’s start with β = 2/3 + γ for some small γ > 0 small,

so that p = n−
1
3

+γ .

We have firstly that E(T ) =
(
n
3

)
p3 = Ω(n2+3γ). Also, T is f(s) = 3s certifiable and n − 2

edge-Lipschitz, so we can apply Talagrands inequality (technically using Lemma 11.3 to relate
the mean to the median and arguing as in Corollary 11.10).

P(T ≥ 1

3
n2+3γ) = P(T ≥ 2E(T )) = P(T − E(T ) ≥ E(T )) ≤ e−

E(T )2

6(n−2)23E(T )

So it’s incredibly unlikely that T ≥ 2E(T ) ≥ 1
3n

2+3γ . We also note that, by the Chernoff bounds,
for any δ > 0 it’s exponentially unlikely that any edge is in more that max{nδ, 2np2} triangles,
since the expected number is np2 and it is a binomial random variable.

(We need the nδ in case the expected number gets too small, so that our concentration is no

longer exponentially good. For this first step np2 = n
1
3

+2γ , and so it’s not important)

However, both T and the number of triangles at an edge are monotone, and so if we decrease
p, they only get more unlikely. Hence if we let β = 4

9 + γ′ for some small enough γ′ > 0, then
it’s still true that

• The probability that T ≥ 1
3n

2+3γ is exponentially small;

• The probability that any edge is in more than n
1
3

+2γ triangles is exponentially small.
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So, let’s let Ω∗ be our exceptional set of events, and consider β = 4
9 +γ′. Note that p = n−

5
9

+γ′

and E(T ) = Ω(n
4
3

+3γ′).

Now, in Ω \ Ω∗ T will have (s, c) certificates for s = 1
3n

2+3γ and c = n
1
3

+2γ . Indeed, we can
take for any ω the set I to be the set of all edges lying in any triangle, and then |I| ≤ s. Similarly,

since every edge lies in at most n
1
3

+2γ , if ω and ω′ differ on I in less than t/c coordinate, then
T (ω) and T (ω′) (which don’t depend at all on coordinates outside of I) can differ by at most t.

Hence, we can use Corollary 11.10 to say that

P(|T − E(T )| ≥ t) ≤ 4e−
t2

16c2s + 4P(Ω∗)

= 4e
− t2

O(n
8
3+5γ

) + 4P(Ω∗)

and this probability will be exponentially small as long as t2 ≥ n
8
3

+5γ . So, as long as t ≥ n
4
3

+ 5
2
γ ,

we get an exponentially small probability of deviations of size t.

So, if 3γ′ > 5
2γ then E(T ) = n

4
3

+3γ′ and

P(|T − E(T )| ≥ E(T )/2) ≤ 4e−
E(T )2

64c2s + 4P(Ω∗)

= 4e
− n

8
3+6γ′

O(n
8
3+5γ

) + 4P(Ω∗)

= o(1).

So, we’ve managed to deduce concentration as low down as β > 4
9 , but we can then just

bootstrap this result as above to get an improvement.

That is to say, if we take some β < 4
9 then by monotonicity we know that the probability that

T ≥ 1
3n

4
3

+γ′ is exponentially small Ã◦and, as before, the probability that any edge is in more
that max{np2, nδ} triangles is also exponentially small. Since β < 4/9 < 1/2, the maximum will
be nδ, where we’ll choose δ > 0 to be very small.

Hence, if we add all these events to our set of exceptional outcomes Ω∗, we now have that T
now has (s, c)-certificates for s = 2n

4
3

+γ′ and c = nδ by the same arguments as before.

Then we can conclude that by Corollary 11.10 that

P(|X − E(X)| ≥ t) ≤ 4e−
t2

16c2s + 4P(Ω∗)

= 4e
− t2

O(n
4
3+γ′+2δ

) + 4P(Ω∗).

Again, this will allow us to conclude exponentially tight concentration as long as t ≥
n

2
3

+γ′/2+δ. Hence, if we choose β such that (n3β ∼)E(T ) ≥ n
2
3

+γ′/2+δ we can say that with
high probability T is concentrated about its mean.

Unpacking everything, as long as β > 2
9+γ′′ with 3γ′′ > γ′/2+δ it follows that E(T ) ≥ n

2
3

+3γ′′ ,
and hence T will be tightly concentrated about its mean.
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(And so, if we want to deduce this concentration for a fixed γ′′, we have to go back and
choose γ′ and δ sufficiently small in the previous part, which means choosing γ sufficiently small
in the first part...)

However, there’s not reason we can’t keep bootstrapping the result up like this. By choosing
the sequence of constants δ, γ, γ′, . . . appropriately small, we can eventually show that T is
tightly concentrated about its mean for β arbitrarily small.

With a bit more care one can use these methods to show the following result.

Theorem 11.11. Let p = n−1+β for β > 0 and let δ > 0. Then with high probability

|T − E(T )| ≤ nδ
√
E(T ).
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12 Entropy Methods

12.1 Basic Results

Given a discrete random variable X let us denote by p(x) := P(X = x) for each x in the range
of X. We define the entropy of the random variable X to be

H(X) =
∑
x

p(x) log

(
1

p(x)

)
.

Note that this quantity is always positive.

We want to think of entropy, at least heuristically, as a measure of the expected amount
of ‘surprise’ we have upon discovering the value of X. We then have the following heuristic
argument for why H(X) should be defined as above.

If we have an event A, such as the event X = x for some x, the amount of ‘surprise’ we have
at the event A happening should just be some functionf(p) of p := P(A). There are a number
of reasonable conditions we should expect f to satisfy:

• f(1) = 0, since a certain event is no surprise;

• f should be decreasing, since rarer events are more surprising;

• f is continuous;

• f(pq) = f(p)+f(q), which can be motivated by considering independent events happening
with probability p and q;

• finally, for normalisation we may as well assume f(1/2) = 1.

It turns out that f(p) = 1
log p is the unique function satisfying these constraints. Then, H(X)

is the expected value, taken over the range of X, of the surprise of the event that X takes a
certain value, and so H(X) is the only ‘reasonable’ function representing the idea following these
heuristics.

For example if X only takes two values, 0 and 1 with probability p and 1 − p respectively,
then

H(X) = p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
,

and so as p→ 1 or 0, H(X)→ 0. It is not hard to see that the entropy of X is maximised when
p = 1/2, in general we have that:

Lemma 12.1. Let X be a discrete random variable and let R be the range of X.

H(X) ≤ log (|R|).

Proof. We will use the following form of Jensen’s inequality. Let f be concave on [a, b], λi ≥ 0
such that

∑n
i=1 λi = 1 and let x1, . . . xn ∈ [a, b]. Then

n∑
i=1

λif(xi) ≤ f

(
n∑
i=1

λixi

)
.
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We note that log (x) is a concave function on (0,∞), and so

H(X) =
∑
x∈R

p(x) log

(
1

p(x)

)
≤ log

(∑
x∈R

p(x)

p(x)

)
= log (|R|).

Given two discrete random variables, X and Y , we define the joint entropy (X,Y ) to be

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
,

where, as before, p(x, y) := P(X = y, Y = y). We also define the conditional entropy, of Y given
X, to be

H(Y |X) =
∑
x

p(x)H(Y |X = x) = Ex
(
H(Y |X)

)
.

Note the difference betweenH(Y |X = x), which is the entropy of the random variable (Y |X = x),
and H(Y |X). We can think of the conditional entropy as being the expected surprise in learning
the value of Y , given that the value of X is known. We might expect, heuristically, that having
extra knowledge should only decrease how surprised we are, and indeed that turns out to be the
case

Lemma 12.2. Let X and Y be discrete random variables. Then

H(Y |X) ≤ H(Y ).

Proof. Let us write, as before p(y|x) = P(Y = y|X = x). Noting that p(y)p(x|y) = p(x)p(y|x) =
p(x, y), we see that

H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
y

p(y)
∑
x

p(x|y) log

(
1

p(y|x)

)

≤
∑
y

p(y) log

(∑
x

p(x|y)

p(y|x)

)

=
∑
y

p(y) log

(∑
x

p(x)

p(y)

)

=
∑
y

p(y) log

(∑
x

1

p(y)

)
= H(Y ).

Where in the above we make repeated use of the fact that, if we sum the probabilities of a
random taking a specific value over it’s entire range the result is 1.

Lemma 12.3 (Chain rule). Let X and Y be discrete random variables. Then

H(X,Y ) = H(X) +H(Y |X).

87



Proof.

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)p(y|x)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)

)
−
∑
x

∑
y

p(x, y) log

(
1

p(y|x)

)
=
∑
x

p(x) log

(
1

p(x)

)
+
∑
x

∑
y

p(x)p(y|x) log

(
1

p(y|x)

)
=
∑
x

p(x) log

(
1

p(x)

)
+
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
= H(X) +

∑
x

p(x)H(Y |X = x)

= H(X) +H(Y |X).

One can also define the joint entropy of a sequence of discrete random variablesX1, X2, . . . , Xn

in a similar way and by induction it follows that

H(X1, X2, . . . , Xn) = H(X1) +H(X2|X1) + . . . H(Xn|X1, X2, . . . , Xn−1).

We shall sometimes refer to this as the chain rule. Note that, by Lemma 12.2 and Lemma
12.3 we have that H(X1, X2, . . . , Xn) ≤

∑
iH(Xi). Finally it is a simple check (left as an

exercise) that if the random variable Y completely determines the random variable Z then
H(X|Y ) = H(X|Y, Z), which again agrees with our intuition.

12.2 Brégman’s Theorem

We now give an example of an application of entropy methods to graph theory. Brégman’s
Theorem was originally a statement about the permanent of a square (0, 1) matrix, however it
can easily be re-formulated to talk about the number of perfect matchings in a graph. Let G be
a graph, Φ(G) be the set of perfect matchings of G and φ(G) = |Φ(G)|. The following proof of
Brégman’s Theorem using entropy methods is due to Radhakrishnan.

Theorem 12.4 (Brégman’s Theorem). Let G be a bipartite graph on vertex classes A and B
such that |A| = |B| = n. Then

φ(G) ≤
∏
v∈A

(d(v)!)
1

d(v) .

Proof. Let M be a perfect matching of G chosen uniformly at random from Φ(G). For con-
venience we will associate A with the set [n] in the natural way, and denote by di the degree
of the vertex i. For each i ∈ [n] let Xi be the neighbour of i in M and we identify M with
X = (Xi)

n
i=1. Since we chose M uniformly at random from a set of φ(G) possibilities we have
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that H(X) = log (φ(G)). Hence if we can bound H(X) from above, we can also bound φ(G).
Note that to get the stated bound we would need to show that

H(X) ≤
n∑
i=1

log (di!)

di
.

A naive first approach might be the use the sub-additivity of entropy to say

H(X) ≤
n∑
i=1

H(Xi),

and since there are at most di possibilities for the random variable Xi we have that

H(X) ≤
n∑
i=1

H(Xi) ≤
∑
v∈A

log (di).

However, by Stirling’s approximation, log (di!)/di ∼ log (di/e), and so this bound is not enough.
However perhaps we can improve this bound by using the chain rule, since we have

H(X) =
n∑
i=1

H(Xi|X1, X2, . . . Xi−1).

We can think of this as revealing the matching one edge at a time, and working out the remaining
entropy at each step given what we know. Now instead of just using the naive bound for each
Xi we can hopefully take into account the fact that, if we already know X1, , X2, . . . Xi−1 this
may reduce the number of possibilities for Xi, since some of the vertices 1, 2, . . . , i − 1 may be
matched to neighbours of i in M , reducing the range of Xi.

However, since the matching M was random and the ordering of A were arbitrary, we don’t
know how many neighbours of i have already been used in M by vertices j < i. However, given
any permutation σ of [n] we can apply the chain rule with respect to the ordering given by σ to
see

H(X) =

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)).

For each matching M there are some orderings that will give a significant improvement on the
bound above, so if we average over all possible choices of σ

H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)),

we might hope to get a reasonable improvement in our bound.

Now, for each Xi there are n! different terms of the form H(Xi|Xj : j ∈ Jσ,i), for some
Jσ,i ⊂ [n] \ {i}, appearing in the sum, where Jσ,i is the set of indices preceding i in the order
defined by σ. So we can re-write the sum as

H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
1

n!

n∑
i=1

∑
σ

1

di
H(Xi|Xj : j ∈ Jσ,i)
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For each of these terms we’ve reduced the range of Xi by how many of the previously exposed
Xj lie in N(i), the neighbourhood of i. Let us denote by Nσ(i) = N(i) \ {Xj : j ∈ Jσ,i} the
vertices in the neighbourhood of i without those already chosen by some Xj , that is, the range
of (Xi|Xj : j ∈ Jσ,i). It follows that, for any fixed σ and i

H(Xi|Xj : j ∈ Jσ,i) =
∑
xj

P(Xj = xj for j ∈ Jσi)H(Xi|Xj = xj for j ∈ Jσi)

≤
di∑
j=1

P(|Nσ(i)| = j) log j

Where we used the defiition of conditional entropy, and then Lemma 12.1. However, since
we’re picking a random matching, it doesn’t seem like we have any control over this improvement,
since we don’t know how much this will reduce the range of Xi.

However, for any given matching M , if we pick a random ordering σ, we claim that the size
of the neighbourhood |Nσ(i)| is uniformly distributed between 1 and di. Indeed, for a given
matching we only care about the order in which we pick i and the vertices matched in M to
the neighbours of i. Since i is equally likely to be chosen in any position in this list, the claim
follows. In other words, for a fixed matching M , the proportion of σ such that |Nσ(i)| = k is 1

di
for each 1 ≤ k ≤ di.

Since this is true separately for each particular matching, then it is also true when we pick a
random matching. So, even though we can’t bound any of the terms P(|Nσ(i)| = j) for a fixed
σ, we can bound their average.

That is to say, if we pick M and σ both uniformly at random then

Pσ,M (|Nσ(i)| = j) = 1/di

and hence, by definition
1

n!

∑
σ

P(|Nσ(i)| = j) =
1

di

Hence,

H(X) =
1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
n∑
i=1

1

n!

∑
σ

H(Xi|Xj : j ∈ Jσ,i)

≤
n∑
i=1

1

n!

∑
σ

di∑
j=1

P(|Nσ(i)| = j) log (j)

=
n∑
i=1

di∑
j=1

(∑
σ

1

n!
P(|Nσ(i)| = j)

)
log (j)

=

n∑
i=1

di∑
j=1

log j

di
=

n∑
i=1

log (di!)

di

giving the bound as claimed.
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Note that this bound is tight. If we take G to be n
d copies of Kd,d then we have that d(v) = d

for all v ∈ A and every matching consists of picking one from the d! possible matchings on each
Kd,d. Therefore.

φ(G) =

n
d∏
i=1

d! =
∏
v∈A

(d(v)!)
1

d(v) .

12.3 Shearer’s lemma and the Box theorem

Given a sequence of discrete random variables random variables X1, X2, . . . , Xn and some subset
A ⊆ [n] let define XA := (Xi : i ∈ A).

Lemma 12.5 (Shearer’s inequality). Let X1, X2, . . . , Xn be discrete random variables and A
a collection (not necessarily distinct) of subsets of [n], such that each i ∈ [n] is in at least m
members of A. Then

H(X1, X2, . . . , Xn) ≤ 1

m

∑
A∈A

H(XA).

Proof. Let A = {a1, a2, . . . , ak} with a1 < a2 < . . . < ak. We have that

H(XA) = H(Xa1) +H(Xa2 |Xa1) + . . .+H(Xak |Xa1 , Xa2 , . . . , Xak−1
)

≥ H(Xa1 |X<a1) +H(Xa2 |X<a2) + . . .+H(Xak |X<ak),

where X<i = (X1, X2, . . . Xi−1). This follows from repeated applications of the chain rule, and
the fact that entropy only decreases if we condition on more variables. Therefore∑

A∈A
H(XA) ≥ m.

∑
i∈[n]

H(Xi|X<i)

= m.H(X1, X2, . . . , Xn)

Shearer’s Lemma is closely related to notions of isoperimetry, the relation between the volume
of a shape and it’s ‘perimeter’ in the following way. If we think about a shape S ⊆ Rn with area
|S| then we can think about the process of picking a random point inside of S. This determines
a vector X = (X1, . . . , Xn) where the Xi are dependent on each other, depending on what the
shape S is.

Suppose we take a very fine grid approximating Rn, we can then think of A as being a discrete
subset of this grid, with ∼ |A| many points. Since this vector X = (X1, . . . , Xn) now has some
finite range, we can relate the volume of S directly to the entropy of X. That is

H(X) = log |S|.

How can we interpret the random variable XA for A ⊂ [n]? Well in this case, this is relatively
clear, these correspond to the projections on the shape A onto the subspace spanned by the
coordinates in A. That is, if we let SA be the projection of S onto the subspace

{(x1, . . . , xn) : xi = 0 for all i ∈ A}
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Then the range of XA is the ‘volume’ (in the n − |A|-dimensional sense) of SA. We will write
Sj for S{j}.

In this way, Shearer’s inequality gives us a way to relate the volume of a shape to it’s lower
dimensional projections. For example, if we just consider the 1-dimensional projections, we have
the famous Loomis Whitney inequality:

Theorem 12.6 (The Loomis-Whitney inequality). Let S ⊂ Zn then,

|S|n−1 ≤
n∏
i=1

|S[n]\{i}|

For example, in two dimensions this simply says that the area of a shape can be bounded
above by the product of its one-dimensional projections, a relatively trivial fact. But even in
three-dimensions it is not clear what the relationship should be between the volume of a shape
and its projections onto two dimensional subspaces.

Notice that, this theorem is tight when |S| is a ‘box’, that is, a set of the form [1,m1] ×
[1,m2] × . . . × [1,mn]. Indeed, the volume of |S| is

∏n
i=1mi and the volume of the projection

of S onto the hyperplane where xi = 0 is just
∏
j 6=imi. This is perhaps not surprise, as a box

represents the case where the Xis are independent, where we get equality in the argument for
Shearer’s inequality.

In fact, we will show a more general theorem, and deduce the Loomis-Whitney theorem as
a corollary. We say a collection of sets C = {C1, . . . , Cm} ⊂ 2[n] is a k-uniform cover if each
i ∈ [n] belongs to exactly k many of the Cj .

Theorem 12.7 (Uniform covers theorem). Let S ⊂ Zn and let C ⊂ 2[n] be a k-uniform cover,
then

|S|k ≤
∏
C∈C
|SC |

Remark 12.8. Note that C = {[n] \ {i} : i ∈ [n]} is an (n − 1)-uniform cover of [n], and so
Theorem 12.6 follows from Theorem 12.7.

Proof. Let us choose a points X = (X1, . . . , Xn) uniformly at random from S. Then, H(X) =
log |S|. By Lemma 12.5 it follows that

H(X) ≤ 1

k

∑
C∈C

H(XC).

However, the range of XC is |SC | and so it follows that

H(X) ≤ 1

k

∑
C∈C

log |SC |.

Combining the two equatons we see that

log |S| ≤ 1

k

∑
C∈C

log |SC |

and so
|S|k ≤

∏
C∈C
|SC |,

as claimed.
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As before, if we consider the 1-uniform cover {{i} : i ∈ [n]}, Theorem 12.7 tells us the
elementary fact the volume of a shape can be bounded by the product of its one-dimensional
projections.

If we go back to our original continuous setting, it is relativelys simple to show that Theorem
12.7 still holds for any ‘reasonable’ (say, measurable) shape S ⊂ Rn, where |.| now denotes the
normal volume, by taking a limit of finer and finer grids. Bollobás and Thomason used Theorem
12.7 to prove quite a surprising theorem:

Theorem 12.9 (Bollobás-Thomason Box Theorem). Let S ⊂ Rn. Then there is a box B ⊂ Rn
such that |B| = |S| and |BA| ≤ |SA| for all A ⊆ [n].

That is, for any shape we can find a box of the same area such that every lower dimensional
projection of this box has smaller volume than the corresponding projection of S. This imme-
diately tells us that for any upper bound we might want to prove for the volume of a set given
the volumes of its projection, we only have to check that it holds for boxes.

Indeed, if we know that for every box B, |B| ≤ f(BA : A ⊂ [n]) for some function f which
is increasing in each coordinate, then for any S we have that |S| = |B| ≤ f(BA : A ⊂ [n]) ≤
f(SA : A ⊂ [n]).

We will need the following definition and lemma. Let C be a uniform cover of [n] we say C is
irreducible if we cannot write it as the disjoint union C = C′ ∪ C′′ of two uniform covers. Note,
this is equivalent to saying there is no non-trivial subset C′ ⊂ C which is a uniform cover.

Lemma 12.10. There are only finitely many irreducible uniform covers of [n]

Proof. Suppose we have a sequence C1, C2, . . . of distinct irreducible uniform covers of [n]. Let us
list the elements of 2[n] as E1, E2, . . . , E2n . We pick a subsequence Ci1 , Ci2 , . . . of the covers such
that the number of copies of E1 in Cij is increasing (not necessarily strictly). Then we choose a
subsequence of this sequence on which the number of copies of E2 is increasing. We do this for
each Ej with j ≤ 2n, so that we have a subsequence Ck1 , Ck2 , . . . on which the number of copies
of each Ej is increasing for all j. However, then Ck1 ⊂ Ck2 , contradicting the assumption that
Ck2 is irreducible.

Proof of Theorem 12.9. We may assume that n ≥ 2. We want to pick real numbers xA for each
A ⊆ [n] with A 6= ∅, [n] such that:

• 0 ≤ xA ≤ |SA| for all A ⊆ [n];

• xA ≤
∏
i∈A xi for all A ⊆ [n];

• |S|k ≤
∏
C∈C xC for every k-uniform irreducible cover C 6= {[n]}.

Note that if the third condition is satisfied for irreducible uniform covers, it is satisfied for
all uniform covers.

By Theorem 12.7 these conditions hold if we let xA = |SA|, so at least one choice exists.
Furthermore its not hard to see that our solution set is closed and bounded, and so compact,
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and hence we can choose one which minimises
∑

A xA. Note further that xA > 0 for every A,
since every A appears in some uniform cover.

Claim. For every i ∈ [n], there is some irreducible k-uniform cover {i} ∈ Ci such that |S|k =∏
C∈Ci xC .

Proof of claim. There are only finitely many inequalities we have to satisfy. Clearly if for every
inequality where xi appeared the inequality was strict, then we could reduce xi by some small
amount such that all the inequalities still held, contradicting the minimality of

∑
A xA.

Hence there is some inequality in which xi appears which is in fact an equality. Suppose it is
one of the form xA =

∏
i∈A xi for i ∈ A ⊆ [n]. Then, by the same argument applied to A, there

is some irreducible cover A ∈ C such that |S|k =
∏
C∈C xC .

However we can consider the uniform cover given by C′ = C \ {A} ∪ {{j} : j ∈ A}. This is
not irreducible, but it’s still true that

|S|k =
∏
C∈C′

xC .

Now, there is some irreducible subcover of C′ which contains {i}, in which equality must also
hold, proving the claim.

Consider the uniform cover given by C :=
⋃
i Ci. This is also a (k′ + 1)-uniform cover such

that
|S|k′+1 =

∏
C∈Ci

xC ,

and furthermore {1}, {2}, . . . , {n} ∈ C. Hence C′ := C \ {{1}, {2}, . . . , {n}} is a k′-uniform cover
and we know that

|S|k′ ≤
∏
C∈C′

xC and |S|k′+1 =
∏
C∈C

xC =
∏
C∈C′

xC ×
n∏
i=1

xi.

It follows that |S| =
∏n
i=1 xi, and so this is a good choice of a box whose volume is S.

Furthermore, for any A ⊆ [n], A 6= ∅, [n] we can consider the 1-uniform cover {A,Ac} of [n]. It
follows that

|S| ≤ xAxAc ≤

(∏
i∈A

xi

)∏
i 6∈A

xi

 = |S|,

and so xA =
∏
i∈A xi. Hence, if we consider the box B = [0, x1] × [0, x2] × [0, xn], we have for

every ∅ 6= A ⊂ [n]

|BA| =
∏
i∈A

xi = xA ≤ |SA|.
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12.4 Independent Sets in a Regular Bipartite Graph

Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and B, and let I(G)
be the class of independent subsets of V (G). We would like to bound this number from above.
As in this previous case, letting G be a disjoint union of Kd,d’s seems a natural guess for a best
possible graph. Indeed in G it is clear that any independent set in G consists of an arbitrary
subset taken from one side of each Kd,d. Therefore we have that

|I(G)| = (2d+1 − 1)
n
d .

The following proof of a corresponding upper bound on |I(G)| using entropy methods is due to
Kahn.

Theorem 12.11. Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and
B, and let I(G) be the class of independent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
d

Proof. The basic idea of the proof is the same as in Theorem 12.4, we pick a random independent
set I and estimate the entropy H(I). As before we have that H(I) = log (|I|).

We identify I with it’s characteristic vector (Xv : v ∈ A ∪ B), note that I is determined
by (XA, XB). The idea is that, rather than splitting X into Xv for each v, we can use the
neighbourhoods of each v ∈ A as a d-uniform cover of the vertices of B, and so use Shearer’s
Lemma to express XB in terms of XN(v).

For each v ∈ A let N(v) be the neighbourhood of v in B. Each w ∈ B is in exactly d of the
sets N(v) and so we have

H(I) = H(XA|XB) +H(XB)

≤
∑
v∈A

H(Xv|XB) +
1

d

∑
v∈A

H(XN(v))

≤
∑
v∈A

(
H(Xv|XN(v)) +

1

d
H(XN(v)

)
,

where the second line follows from Shearer’s inequality, and the third since N(v) ⊂ B.

Fix some v ∈ A. Let χv be the indicator random variable of the event that I ∩ N(v) 6= ∅,
and let p := P(χv = 0), that is the probability that I ∩ N(v) = ∅. The nice thing about this
random variable is that it contains all the information about XN(v) that we need to determine
H(Xv|XN(v)).

Hence ,

H(Xv|XN(v)) ≤ H(Xv|χv)
= P(χv = 0)H(Xv|χv = 0) + P(χv = 1)H(Xv|χv = 1)

= P(χv = 0)H(Xv|χv = 0) ≤ p,

since the event χv = 1 determines that Xv = 0, and since H(Xv) ≤ log (|range(Xv)|) = 1.
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Also,

H(XN(v)) = H(XN(v), χv)

= H(χv) +H(XN(v)|χv)
≤ H(p) + (1− p) log (2d − 1),

where H(p) = p log (1/p) + (1− p) log (1/(1− p)). Putting these inequalities together gives us

H(I) ≤
∑
v∈A

(p+
1

d

(
H(p) + (1− p) log

(
2d − 1

))
.

All that remains is to maximise the quantity on the right hand side according to p. It is a
simple exercise to check that the function is convex, and to calculate its derivative, giving that
the maximum is attained at p = 2d/(2d+1 − 1), and so (1− p) = 2d − 1/(2d+1 − 1) giving that:

H(I) ≤
∑
v∈A

(p+
1

d

(
H(p) + (1− p) log

(
2d − 1

))
= n

(
p+

1

d

(
p log (1/p) + (1− p) log (1/(1− p)) + (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

2d

)
+ (1− p) log

(
2d+1 − 1

2d − 1

)
+ (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

)
− pd+ (1− p) log

(
2d+1 − 1

)))
= n

(
p− p+

1

d

(
(p+ (1− p)) log

(
2d+1 − 1

)))
= n

1

d
log
(

2d+1 − 1
)

log (|I|) = H(I) ≤ n.1
d

log
(

2d+1 − 1
)
,

from which the result follows.

12.5 Bipartite Double Cover

Theorem 12.11 tells us the maximum number of independent sets in a d-regular graph when
it is bipartite, however it also makes sense to ask that question for general graphs. After a
little thought it may seem that the same example from the previous sections, a disjoint union
of Kd,ds, is still a sensible graph to consider. In fact it had been conjectured that this was the
best possible case for general d-regular graphs for around 10 years, even before Kahn proved it
for bipartite graphs.

Then, another 10 years after Kahn’s result, whilst still an undergraduate, Zhao used an
ingenious, and simple, argument to show that the bipartite case actually implies the general
case, using the idea of a bipartite double cover of a graph.

Given any graph G we define the bipartite double cover of G to be the tensor product, G×K2.
Recall that this is a graph with vertex set

{(v, i) : v ∈ V (G) and i ∈ {0, 1}}
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and edge set
{
(
(v, 0), (w, 1)

)
: (v, w) ∈ E(G)}.

If G is d-regular then it is clear that G×K2 is also. Any independent set in G×K2 corresponds
to a pair of subsets of V , (A,B), such that there is no edge between A and B in G, we would
like to relate the number of such pairs in some way to the number of independent sets in G.

We say that A is independent from B if there are no edges between A and B. If we let J (G)
be the set of (A,B) such that A is independent from B and G|A∪B is bipartite, then we have
that J (G) ⊂ I(G×K2). We can relate J (G) to I(G) in the following way. .

Lemma 12.12. For any graph G, there exists a bijection between I(G)× I(G) and J (G).

Proof. For every X ⊂ V such that G|X is bipartite let us fix a particular bipartition X = X1∪X2,
such that X1 and X2 are independent in G.

We let K(G) be the set of pairs of subsets (A,B) such that G|A∪B is bipartite. Note that, in
particular I(G)× I(G) ⊂ K(G) and J (G) ⊂ K(G).

Given some (A,B) ∈ K(G), since G|A∪B is bipartite, we fixed some particular bipartition
X1 ∪X2 of A ∪B at the beginning of the proof. We note that

φ(A,B) :=
(
(A ∩X1) ∪ (B ∩X2), (A ∩X2) ∪ (B ∩X1)

)
is also an element of K(G), and that φ2(A,B) = (A,B). So φ is an involution on K(G), and it
is clear that φ is size preserving.

However we claim that φ maps I(G)×I(G) to J (G), and vice versa. Indeed, given (A,B) ∈
I(G) × I(G) let (C,D) = φ(A,B). Since A, B, X1 and X2 are independent, it is clear that C
is independent from D, and G|C∪D = G|A∪B is bipartite. Therefore (C,D) ∈ J (G).

Conversely, given (C,D) ∈ J (G) let (A,B) = φ(C,D). Since C is independent from D and
X1 and X2 are independent, we have that both A and B are independent, and so (A,B) ∈
I(G)× I(G).

However, since φ is an involution, it must therefore be a bijection between I(G)× I(G) and
J (G).

Theorem 12.13. Let G be a d-regular graph on n vertices, and let I(G) be the class of inde-
pendent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
2d

Proof. We consider the bipartite double cover of G. Recall that an independent set in G×K2

is a pair of subsets (A,B) such that A is independent from B. We have by Lemma 12.12 that

|I(G×K2)| ≥ |J (G)| = |I(G)× I(G)| = |I(G)|2

However, since G×K2 is bipartite and d-regular, we can apply Theorem 12.11 to see that

|I(G×K2)| ≤ (2d+1 − 1)
n
d .

Combining the two inequalities gives the desired result.
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13 Derandomization and Combinatorial Games

13.1 Maximum Cuts in Graphs

Let us consider with the following algorithmic problem, known as MAXCUT: given a graph G,
paritition V into two classes A and B = V \ A such that the number of edges going between
A and B is maximised. This problem is in fact NP-complete. The following application of the
probabilistic method tell us that we can always achieve at least half of the edges in the graph.

Theorem 13.1. Any graph G, with e(G) = m, contains a bipartite subgraph with at least m/2
edges.

Proof. Given G = (V,E) let us choose a subset A ⊆ V randomly by including each vertex in A
independently with probability 1/2. We consider the partition of V into A and B = V \A. For
any given edge e = (u, v) let Xe be the indicator variable of the event that e is in the bipartite
subgraph between A and B. So we have that

E(Xe) = P
(
(u ∈ A and v ∈ B) or (u ∈ B and v ∈ B)

)
=

1

4
+

1

4
=

1

2
.

Let X be the number of edges in the bipartite subgraph between A and B, it is apparent that
X =

∑
e∈E(G)Xe, and so

E(X) =
∑

e∈E(G)

E(Xe) =
m

2
.

Therefore for some choice of A the random variable X has value ≥ m/2, and so the bipartite
subgraph of G between A and B contains at least m/2 edges.

We note that while the theorem asserts the existence of a large cut, it gives no indication of
how to find one deterministically. However in many cases, including this one in particular, we
can “derandomize” such an argument to produce a fully deterministic algorithm.

Example. Suppose we wish to construct a partition of the vertex set with a large number of
edges across it. First we order the vertices, let us suppose they are labelled 1, . . . , n and we are
going to go through them in turn and decide if they should be in A or B.

To do this we define a potential function w which is defined on the set of partial bipartitions,
that is pairs of subsets (A,B) ⊂ V 2 such that A ∩B = ∅. Given (A,B) we extend it randomly
to a bipartiton of V , that is independently for each vertex v ∈ V \ (A ∪B) we add v to A with
probability 1/2 or B with probability 1/2. We end up with some bipartition V = A′ ∪ B′ such
that A ⊂ A′ and B ⊂ B′. We define the potential of (A,B), w(A,B), to be the expected number
of edges across this partition.

The algorithm can then be described as follows, we start with (A0, B0) = (∅, ∅). We will
construct a sequence of partial bipartitions {(Ai, Bi : i ∈ [n]} such that A0 ⊂ A1 ⊂ . . . ⊂ An,
B0 ⊂ B1 ⊂ . . . ⊂ Bn and Ai ∪ Bi = {1, 2, . . . , i}, that is (Ai, Bi) is a bipartition of the first i
vertices of the graph. Suppose we have constructed (Ai−1, Bi−1), to construct Ai, Bi we have to
choose between the two bipartitions (Ai−1 ∪ i, Bi−1) and (Ai−1, Bi−1 ∪ i), to do so we pick the
one with the largest potential. Clearly this defines algorithmically a bipartition (An, Bn) of the
graph G.
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Let us note a few things about the algorithm. Firstly we see that w(A0, B0) is just the
expected number of edges across a random bipartition, which we calculated to be m/2 in the
previous theorem. Also we note that, for any i

w(Ai, Bi) =
1

2

(
w(Ai−1 ∪ i, Bi−1) + w(Ai−1, Bi−1 ∪ i)

)
,

since any random bipartition extending (Ai−1, Bi−1) must extend one of (Ai−1 ∪ i, Bi−1) or
(Ai−1, Bi−1 ∪ i), and it has an equal probability (of 1/2) of extending either. Hence

max
(
w(Ai−1 ∪ i, Bi−1), w(Ai−1, Bi−1 ∪ i)

)
≥ w(Ai, Bi),

and so at each stage of the algorithm the potential of the partial bipartition is non-decreasing.
Therefore we can conclude that

w(An, Bn) ≥ w(A0, B0) =
m

2
.

However, w(An, Bn) is just the number of edges across the bipartition (An, Bn), and hence this
algorithm produces a bipartition with at least m/2 edges going across it.

13.2 Ramsey graphs

Let us applying the same reasoning to a similar problem. In Section 2 we used the basic
probabilistic method to show that, if

2

(
n

k

)
2−(k2) < 1

then R(k, k) > n. That is, there is a graph on n vertices which contains no clique or independent
set of size k. Again, the proof was non-constructive, but we can use the idea of de-randomization
to find an algorithm, which will in fact be polynomial in the size of n (for k fixed), to construct
such a graph. It will be simpler to think about finding a 2-colouring of Kn without a monochro-
matic Kk.

We argue in a similar way to as before. We define a potential function w on the set of all
partial colourings of the edge set of Kn, which will be the expected number of monochromatic
Kk’s in a random extension of that colouring. Explicitly if we have a colouring c : E →
{red, blue} on some subset E ⊂ E(G) we choose a random colouring c′ : E(G) → {red, blue}
such that c′ = c on E by choosing for each edge in E(G)\E the colour red or blue independently
with probability 1/2. We define the potential of a partial colouring c, w(c), to be the expected
number of monochromatic Kks in such a c′.

So, we pick an arbitrary ordering {e0, e1, . . . , em} of the edges of Kn and we define a colouring
algorithmically as follows: we start with the empty partial colouring, c0. Suppose we have a
colouring ci−1 of the set Ei−1 = {e1, e2, . . . , ei−1} we consider the two colourings of Ei, c

r
i , which

equals ci−1 on Ei−1 and cri (ei) = red, and cbi , which equals c on Ei−1 and cbi(ei) = blue. We let
ci be the partial colouring of minimal weight. Again, this will define algorithmically a colouring
of Em = E(G).

We note that, for every i

w(ci−1) =
1

2

(
w(cri ) + w(cbi)

)
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and so
w(ci) ≤ w(ci−1).

Therefore w(cm) ≤ w(c0). However w(c0) is just the expected number of monochromatic k-sets
in a random 2-colouring of Kn. Hence if

w(c0) = 2

(
n

k

)
2−(k2) < 1,

then we can conclude the w(cm) < 1 as well. However, w(cm) is the number of monochromatic
k-sets in the colouring cm, and so, since it is an integer, we can conclude the w(cm) = 0. That
is, cm is a 2-colouring of Kn which contains no monochromatic set of size k, as claimed.

We note that this polynomial has running time O(nk+2) for fixed k. Indeed, to compute the
potential of any partial colouring we need to calculate the expected number of monochromatic k-
sets in an extension of that colouring. However we can split this up into the sum of the indicator
functions of each specific k-set being monochromatic. There are

(
n
k

)
= O(nk) such sets, and

for each k-set to calculate the probability it will be monochromatic we only need to look at the
colouring restricted to the

(
k
2

)
edges contained in it, since the probability is a function of that

colouring. Hence for each partial colouring the potential can be calculated in time O(nk), and
so, since the algorithm has m =

(
n
2

)
steps, each taking time at most O(nk), we have that the

total algorithm has run-time O(nk+2).

13.3 Positional Games

Definition. A strong positional game consists of a pair (X,F) where X is a set, called the
board, and F ⊂ 2X is a family of winning lines. The game is played by two players, sometimes
referred to as Red and Blue, who take turns claiming points of the board (with Red going first),
which we may think of as colouring some point x ∈ X as either red or blue. Given a particular
play of the game, that is a sequence of moves (r1, b2, r3, b4 . . .), the winner is the first player
to claim all points in some winning set F ∈ F . If at no point during the game either player
achieves this, the game is a draw.

For an example, a well known strong positional game is the game Tic-Tac-Toe, or noughts
and crosses. If Red has a strategy to win a game (X,F) we call the game Red-win, and similarly
for Blue. If both players have a drawing strategy we call the game a draw.

Lemma 13.2. If X is finite then all strong positional games (X,F) are either Red-win, Blue-
win, or a draw.

Proof. If we think of any particular play of the game as being a sequence of moves (r1, b2, r3, b4 . . .),
then if the game is Red-win we know that

∃r1 ∀b2 ∃r3 ∀b4 . . . such that {r1, b2, r3, b4 . . .} is a win for Red,

and if the game is Blue win

∀r1 ∃b2 ∀r3 ∃b4 . . . such that {r1, b2, r3, b4 . . .} is a win for Blue.

So, if neither happens, by De Morgan’s laws both

∀r1 ∃b2 ∀r3 ∃b4 . . . such that {r1, b2, r3, b4 . . .} is not a win for Red,
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and
∃r1 ∀b2 ∃r3 ∀b4 . . . such that {r1, b2, r3, b4 . . .} is not a win for Blue,

and so both players have a drawing strategy.

It is a folklore theorem that in fact every strong positional game is either a Red-win or a
draw. The following argument is usually referred to as strategy stealing.

Theorem 13.3. Let (X,F) be a strong positional game with X finite. Then (X,F) is either a
Red-win or a draw.

Proof. Let us assume that Blue has a winning strategy Φ. We use Φ to describe a winning
strategy for Red as follows. Red claims his first point arbitrarily, and from this point onwards
in the game he ignores the point and pretends to be Blue.

That is, he responds to each of Blue’s moves according to the strategy Φ as if he had not
taken the first point and Blue was the first player. If at any point the strategy calls for him to
claim a point that he has already taken, but is ignoring, then he claims another points arbitrarily
and ignores that one instead.

Since the arbitrary extra point game only help Red, and since Φ was a winning strategy for
blue, against any strategy of Blue’s Red will claim a winning set first, including when Blue plays
according to the strategy Φ. However this contradicts the assumption that Φ was a winning
strategy.

We note that both of the preceeding theorems also hold in the case where X is infinite, but
F is a set of finite subsets of X.

If we consider (X,F) as a hypergraph, then we note that at the end of a game which is
a draw, the resulting colouring of the hypergraph contains no monochromatic winning set by
definition. Therefore if (X,F) is such that every 2-colouring of X contains a monochromatic
F ∈ F , then we know that no play of the game can end in a draw, and so (X,F) must be
Red-win.

Conversely there is a very natural condition, arising from a probabilistic proof, that ensures
that such a 2-colouring does exist:

Lemma 13.4. Suppose (X,F) is a hypergraph. If∑
F∈F

2−|F | < 1/2

then there exists a 2-colouring of X containing no monochromatic F ∈ F .

Proof. This is a simple application of the probabilistic method. We choose a 2-colouring uni-
formly at random by picking, for each x ∈ X independently, the colour of x to be red or blue with
probability 1/2. If we let X be the number of monochromatic F in this colouring, we can split
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X into the sum of the indicator random variables of the event that each F is monochromatic,
which happens with probability 21−|F |. Therefore

E(X) =
∑
F∈F

21−|F | < 1.

Hence there exists some colouring for which the number of monochromatic F is less than 1, that
is, there are no monochromatic F .

So, if the condition above is satisfied, if both players played randomly we would expect the
game to be a draw. We would like to derandomize this argument to find a strategy for Blue
that will show that the game in fact is a draw. We note that, by Theorem 13.3, it would be
sufficient to find a strategy for Blue which stops Red from winning.

Theorem 13.5. [The Erdős-Selfridge Theorem] Suppose (X,F) is a strong positional game. If∑
F∈F

2−|F | < 1/2

then (X,F) is a draw.

Proof. Let us first enumerate F = {F1, F2, . . . , Fm}. We will a define a potential function φ on
the set of partial colourings of the board. Given some partial colouring c : S → {red,blue}, let
us define for each Fi ∈ F

fi = the number of x ∈ Fi coloured red

We can then define the potential of each Fi to be

φc(Fi) =

{
0 if there is some x ∈ Fi coloured blue

2fi−|Fi| otherwise

We note that the potential of a set is just the probability that that set would be coloured all red
in a random extension of c′. We can think of the potential as being a weighted measure of how
‘dangerous’ a set Fi is for Blue. If there are many red points in the set, then the set is quite
close to making Red win, and so Blue should want to colour a point in that set.

We then define

φ(c) =
m∑
i=1

φc(Fi)

and note that φ(c) is the expected number of red winning sets in a random extension of c′. We
note that the potential of the empty colouring is less than 1/2.

So let us consider what can happen to the potential when Red moves. When Red colours a
point x ∈ X red, changing the partial colouring c to c′, what is the effect on the potential? For
every x ∈ Fi ∈ F which doesn’t already have a blue point in we have that

φc′(Fi) = 2φc(Fi),

and for every x ∈ Fi ∈ F which does already have a blue point in, this equation is also true,
since both sides are zero. Therefore the change in potential after Red’s move is to increase the
potential by ∑

x∈Fi

φc(Fi).

102



In particular, after Red’s first move the total potential is less than 1. We would like to argue that
Blue has a strategy that will always decrease this potential. A natural strategy to investigate
would be the one in which Blue always chooses the point minimising the potential. Suppose
Blue plays according to this strategy Let us consider, after the first move, some pair of moves,
consisting of a move of Blue’s and a move of Red’s. At this point we have some partial colour c
on a subset S ⊂ X.

What happens to the potential when Blue colours a point x ∈ X \ S blue, again changing
the partial colouring c to c′? Well, for every x ∈ Fi ∈ F , colouring x blue changes the potential
of Fi to zero and so the total change in potential is

−
∑
x∈Fi

φc(Fi).

So, if Blue chooses the x which minimises this quantity we have that, after Red has coloured
some point y ∈ X \ (S ∪ x) red, changing c′ to c′′,

φ(c′′) = φ(c′) +
∑
y∈Fi

φc′(Fi) = φ(c)−
∑
x∈Fi

φc(Fi) +
∑
y∈Fi

φc′(Fi)

= φ(c)− max
x∈X\S

∑
x∈Fi

φc(Fi) +
∑
y∈Fi

φc′(Fi)

≤ φ(c)− max
x∈X\S

∑
x∈Fi

φc(Fi) + max
y∈X\(S∪x)

∑
y∈Fi

φc′(Fi).

However we note that, since the difference between c and c′ is a singe point being coloured
blue, we have that φc′(Fi) ≤ φc(Fi) for all Fi ∈ F and so

φ(c′′) ≤ φ(c)− max
x∈X\S

∑
x∈Fi

φc(Fi) + max
y∈X\(S∪x)

∑
y∈Fi

φc(Fi) ≤ φ(c).

Therefore, after each of Red’s moves we have that the potential is < 1, and so after the last
move of Red’s this is still true. If this is the last move of the game, then the potential at the
end of the game is < 1, if not, then the last move of blue can still only decrease the potential.

Therefore, against any strategy of Red, this gives a strategy for blue that ensures that, at the
end of the game, the value of the potential function on the colouring obtained is < 1. However,
given a complete colouring c : X → {red,blue}, it is clear that φ(c) is equal to the number of
winning sets which are totally coloured red, and since this must be an integer, if it is < 1 it
must be 0.

Therefore Red cannot have a winning strategy (since it would lose against this strategy of
Blue’s), and so by Theorem 13.3 both players have a drawing strategy, and hence the game is a
draw.

Let us consider as an application of these ideas the Ramsey Game. This is played with the
board being the edge set of a complete graph Kn and the winning sets being the edge sets of
any complete subgraph Kk. So there are

(
n
k

)
winning sets, each of size

(
k
2

)
.
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If n ≥ R(k, k), then every 2-colouring of Kn contains a monochromatic Kk, and so neither
player can have a drawing strategy, and so the game is Red-win.

Conversely, if ∑
F∈F

2−|F | =

(
n

k

)
2−(k2) < 1/2

then we have by Theorem 13.5 that both players have a drawing strategy. We note that this gives
an slightly different proof that if the above condition is satisfied then we can algorithmically
find a colouring of Kn with no monochromatic Kk.

Since both players have a drawing strategy, if they both play using that drawing strategy
the resulting colouring will contain no monochromatic Kk. However the proof above gives an
explicit description of such a strategy for both players, each move of which can be computed
in algorithmic time. In fact, this shows slightly more than the previous section, that we can
construct such a colouring which is balanced, that is, an equal number of edges are coloured red
and blue.

As another example consider the following game, a natural extension of Tic-Tac-Toe, called
the n-in-a-row game. The board is Z2, and the winning lines are any consecutive line of n points
in a row, either horizontally, vertically or diagonally.

For very small n, it is not too hard to find a winning strategy as Red, however, using the
Theorem 13.5 we can show that, for large enough n, the game is a draw.

Theorem 13.6. For n ≥ 40 the n-in-a-row game is a draw.

Proof. Since the number of winning sets is infinite, we can’t apply the Erdős-Selfridge theorem
directly. However, suppose we split Z2 into squares, and on each of the squares pretend we’re
playing a smaller n′-in-a-row game inside there. That is, whenever Red plays in a square, our
strategy will be the respond inside the same square.

Suppose we’re playing in an m×m square. The number of winning sets is at most 4m2, and
each winning set has n′ points in it. So by Theorem 13.5, as long as

4m22−n
′
< 1/2,

then Blue can stop Red from forming a line of line of length n′ inside this m×m square. Note
that we can take m >> n′ and still have this hold. However, if we split Z2 into m×m squares
with m ≥ n then it is not to hard to check that any winning line meets at most 3 different
squares, and so, if Blue has a strategy to stop Red from forming a line of length n/3 in any
m ×m square, then he can stop Red from forming a line of length n in the entire plane, since
any such line would contain an interval of length ≥ n/3 in some square.

It just remains to pick a suitable n and m. If we take, for simplicity’s sake, n = m, then we
need to pick n such that

n22−dn/3e < 1/2,

and it is a simple check that n = 40 will do.

We note that no attempt has been made the optimise the number 40 here, with the same
method it can be made lower, but there is a much simpler method, called a pairing strategy,
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with which one can show that in fact the 8-in-a-row game is a draw. Conversely it is known
that 4-in-a-row is Red-win, the cases for n = 5, 6, 7 are still unknown.

13.4 Weak Games

Suppose we wanted to prove a converse to Theorem 13.5, to say that if the initial value of the
potential function was large, that Red has a strategy to keep it large, and thus to win at the
end.

After a bit of thought, one sees that this isn’t too likely. The problem is that, for Red to win,
he needs not only to guarantee that he forms a winning set, but also stop Blue from claiming
one first. This seems like too complicated an aim to express with the maximisation of a single
quantity. In fact, in general, this fact often makes winning strategies for strong positional games
quite difficult to analyze. For this reason sometimes a simpler game is considered, called a weak
positional game, or Maker-Breaker game.

Definition. Given a strong positional game (X,F) the corresponding weak positional game, or
Maker-Breaker game, MB(X,F) is played as follows. The two players, Maker and Breaker, take
turns claiming points of the board X, with Maker going first. We will still sometimes think of
Maker as colouring his points red, and Breaker blue. Maker wins if at some point in the game he
can claim all the points in some winning set F ∈ F , and Breaker wins otherwise. If Maker has a
winning strategy we call the game Maker-win, and similarly if Breaker has a winning strategy.

Similar to the proof of Lemma 13.2, every Maker-Breaker game is either Maker-win or
Breaker-win. We note that if MB(X,F) is Breaker-win, then the second player in (X,F)
has a drawing strategy and so the game is a draw. Similarly if (X,F) is Red-win, then the first
player has a winning strategy, and so MB(X,F) is Maker-win. However neither of the converses
are true in general.

Broadly speaking the Maker-Breaker game is easier for Maker than for Red, since he does
not have to bother with stopping Blue from winning, just with forming a winning set himself.
Our aim is to prove a converse of the Erdős-Selfridge theorem to find a sufficient condition for
a game to be Maker win. Let us restrict our attention to the case where all winning sets have
the same size n.

Suppose we wished to find some converse to the Erdős-Selfridge condition, which says that if

|F | < 2n−1

then Breaker has a winning strategy, a natural thing to hope for is some lower bound on the
number of winning sets which guarantees a Maker win. However, a little thought shows this is
not possible without some extra conditions.

For example, if there are many winning sets, but they are all disjoint, then Breaker has a
winning strategy by simply playing in the same set that Maker does. Hence, we will need some
control on |X|, the size of the ground set.

Similarly, it could be that the ground set is small, but the winning sets all contain the same
two points x and y. Then Breaker has a strategy to claim at least one of x and y, at which
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point Maker cannot when. Therefore, we will need some sort of control on

∆2(F) = max
x,y∈X

|{F ∈ F : x, y ∈ F}|,

that is, the maximum number of winnings sets that any pair is in. As the next theorem shows
however, these two considerations are then sufficient.

Theorem 13.7. Suppose MB(X,F) is a weak positional game, with F n-uniform. If

|F| > 2n−3|X|∆2(F)

then MB(X,F) is Maker-win.

Proof. The proof follows the same idea as that of Theorem 13.5. We want to define a potential
function, on the set of partial colourings, which will start large, and which we will be able to
prevent from decreasing too much over any two turns of the game.

Let us try the same function as before, that is, for each F ∈ F , φc(F ) can be thought of
as the probability that a randomly chosen extension of c will make F monochromatically red,
and then φ(c) =

∑
F φc(F ) is the expected number of monochromatically Red sets in a random

extension of c.

So, a natural strategy for Maker would be, at each stage, to pick the point x which will
maximise the new value of the potential function. So, let us estimate what can happen in a pair
of moves. Suppose we are at some stage of the game and have some partial colouring c on a
subset S ⊂ X.

What happens to the potential when Maker colours a point x ∈ X \ S red, changing the
partial colouring c to c′? Well, for every x ∈ Fi ∈ F , colouring x red doubles the contribution
of Fi to φ and so the total change in potential is∑

x∈Fi

φc(Fi).

Now what happens if Breaker colours a point y ∈ X \ (S ∪ {x}) blue, changing the colouring
to c′′? As before, for every y ∈ Fi ∈ F , colouring y blue removes the contribution of Fi to φ and
so the total change in potential is

−
∑
y∈Fi

φc′(Fi).

For most of the Fi, φ will not have changed between c and c′, however for some of the Fi we
will have doubled the contribution of Fi to φ by colouring x red, before Breaker removed the
contribution of Fi by colouring y blue. This will be for precisely the set of Fi such that both x
and y ∈ Fi.
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Hence the total change in potential is

−
∑
y∈Fi

φc′(Fi) = −
∑

y∈Fi,x 6∈Fi

φc(Fi)−
∑

y∈Fi,x∈Fi

φc′(Fi)

= −
∑

y∈Fi,x 6∈Fi

φc(Fi)−
∑

y∈Fi,x∈Fi

2φc(Fi)

= −
∑
y∈Fi

φc(Fi)−
∑

y∈Fi,x∈Fi

φc(Fi).

Therefore, if Maker chooses x to maximise the first quantity, the total change in potential
from c to c′′ will be

φ(c′′) = φ(c′)−
∑
y∈Fi

φc′(Fi) = φ(c) +
∑
x∈Fi

φc(Fi)−
∑
y∈Fi

φc′(Fi)

= φ(c) + max
x∈X\S

∑
x∈Fi

φc(Fi)−
∑
y∈Fi

φc(Fi)−
∑

y∈Fi,x∈Fi

φc(Fi)

≥ φ(c) +
(

max
x∈X\S

∑
x∈Fi

φc(Fi)− max
y∈X\(S∪{x})

∑
y∈Fi

φc(Fi)
)
−

∑
y∈Fi,x∈Fi

φc(Fi)

≥ φ(c)−
∑

y∈Fi,x∈Fi

φc(Fi) ≥ φ(c)− 1

4
∆2.

Where the last line follows since there are at most ∆2 such Fi containing both x and y and,
since x and y were uncoloured by c by assumption, the potential of all these sets is at most 1

4 .

We note that the potential at the start is equal to

2−n|F| > 1

8
|X|∆2(F)

and in every pair of moves the potential decreases by at most 1
4∆2. So at the end of the game

we have some colouring c, and there have been |X|/2 pairs of moves, and so the potential is still

φ(c) >
1

8
|X|∆2(F)− |X|

2

1

4
∆2 > 0.

However, as before, the potential of a complete colouring counts the number of monochromati-
cally red winning sets, and hence, at the end of the game, Maker must have completely claimed
a winning sets.

For example, applying this to the Ramsey game gives a criterion for Maker win, however it
is asymptotically worse than the bound which follows from Ramsey theoretical arguments. As
a more useful example, one can use this theorem to show that the n-in-a-row game is a Maker
win if we allow winning lines of arbitrary rational slope.

13.5 The Neighbourhood Conjecture

The Erdős-Selfridge theorem is quite a broad global condition on a game, that there are not ‘too
many’ winning sets, which guarantees that the game is a draw. There is quite a natural, albeit
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weak, local condition under which we can conclude the same, sometimes known as a draw by
pairing strategy.

For example, suppose we play a positional game on a set X such that the winning sets are
a collection of disjoint pairs, then Blue can force a draw by, whenever Red claims a point in
a winning set, claiming the second point from that pair. More generally, if Blue can choose
a disjoint collection of pairs {{xi, yi} : i ∈ [m]} from X, such that every transversal of this
collection contains a point from every F ∈ F , then (X,F) is a draw.

Indeed, if whenever Red claims xi or yi Blue claims the remaining point then, at the end of
the game, Blue has claimed some transversal of the set of pairs and so, by assumption, he has
claimed a point in every winning set. The following Lemma gives a natural condition arising
from Hall’s theorem when we can find such a collection of pairs.

Lemma 13.8. Let (X,F) be a positional game. Suppose that for every G ⊂ F∣∣∣∣∣ ⋃
G∈G

G

∣∣∣∣∣ ≥ 2|G|

(That is, the total number of points in X contained in some member of G is at least twice as
large as the number of sets in G). Then (X,F) is a draw.

Proof. Let us a form a bipartite graph G on vertex sets

A = X and B = F × {0, 1},

where we join every point x ∈ A to each (F, i) ∈ B such that x ∈ F . We first note that a
matching from B to A in G gives us a disjoint collection of pairs as above. Indeed, if we let
{xF , yF } be the two vertices joined to (F, 1) and (F, 0) in such a matching, we have that the
collection of pairs

{{xF , yF } : F ∈ F}

is disjoint, and every transversal of this collection contains a point from each F ∈ F .

However it is a simple check that the graph satisfies Hall’s condition. Indeed, suppose we
have some subset C ⊂ B such that the size of the neighbourhood of C is smaller than the size
of C.

Let us choose the smallest subset G ⊂ F such that

C ⊂ G × {0, 1},

and note that 2|G| ≥ |C|. Since for every G ∈ G we have at least one of (G, 0), (G, 1) ∈ C, we
have that

|N(C)| ≥

∣∣∣∣∣ ⋃
G∈G

G

∣∣∣∣∣ ≥ 2|G| ≥ |C|,

and hence a matching from B to A exists by Hall’s theorem.

Corollary 13.9. Let (X,F) be a positional game in which every winning set has size ≥ n. If
every point x ∈ X is in at most n/2 winning sets, then the game is a draw.
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Proof. We note that for any G ⊂ F , by double counting,∣∣∣∣∣ ⋃
G∈G

G

∣∣∣∣∣ ≥ |G|n 2

n
= 2|G|.

Hence by Lemma 13.8 (X,F) is a draw.

So, Corollary 13.9 tells us that, if each point isn’t in ‘too many’ winning sets, then the game
is a draw, where ‘too many’ is linear in n. However, there is a sensible heuristic reason why we
might think Corollary 13.9 can be improved.

If we consider (X,F) as a hypergraph, then we know from the previous section that in order
for (X,F) to be a draw there must exist a 2-colouring of F with no monochromatic edge, since
this is the gamestate at the end of any drawn game.

Using the probabilistic method we were able to show that such a colouring must exist when
F satisfied some global condition, and by de-randomizing that argument we were able to show
that, if F satisfied some slightly weaker condition, the game was in fact a draw.

In the case of a local condition like above, the Lovász Local Lemma gives us a very natural
condition of F that ensures the existence of such a 2-colouring.

Lemma 13.10. Suppose H = (X,F) is an n-regular hypergraph in which every vertex is in at
most 2n−2/n edges, then there exits a 2-colouring of X with no monochromatic edge.

Proof. This is a simple application of the Local Lemma, let us consider a 2-colouring of X picked
uniformly at random. For each edge F ∈ F we let XF be the event that F is monochromatic.

We see that P(XF ) = 2−n for each F , and also that each event is mutually independent of
all but the events XF ′ where F and F ′ intersect. Since each vertex is in < 2n−2/n edges, each
edge intersects < 2n−2 others, and there exists a dependency digraph of outdegree < 2n−2.

Therefore, since

e2n−22−n =
1

4
e < 1

we have by Corollary 9.3 that there exists a 2-colouring satisfying the conditions of the lemma.

So, perhaps we might expect that a condition closer to Lemma 13.10 should imply that a
game is a draw, perhaps by ‘de-randomizing’ in some sense the proof of the Local Lemma. That
is it would be useful to have an algorithm that, under the conditions where the Local Lemma
guarantees the existence of a point in a probability space where certain events holds, actually
finds such a point.

Recently some major breakthroughs have been made in this area, in particular Moser and
Tardos (2009) have developed an algorithm that works in almost all known applications of the
Local Lemma, which we shall look at in the next section. Unfortunately, it still does not seem
clear how one can use this to find a drawing strategy, and the following is still an open conjecture,
of Beck.
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Suppose we define f(n) to be the smallest number such that the following is true: Every
positional game (X,F) in which every winning set has size n and each point in is at most f(n)
winning sets is a draw. Corollary 13.9 tell us that f(n) ≥ n/2.

Conjecture 13.11 (The Neighbourhood Conjecture).

f(n) =
2n−2

n
.

Rather amazingly the best current bounds are that n/2 ≤ f(n) ≤ 2n−1/n, that is, we don’t
even know if this function grows exponentially fast.
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14 The Algorithmic Local Lemma

Suppose we have a probability space Ω which comes with an underlying set of mutually inde-
pendent random variable Z1, . . . , Zn. We are considering some set of events (Ai : i ∈ I), as in
the local lemma, where each Ai is determined by some subset vbl(Ai) ⊂ {Z1, . . . , Zn} of the Zj .

In this case, a very natural dependency graph to take is that graph where i ∼ j if and only
if vbl(Ai) ∩ vbl(Aj) 6= ∅, when the events Ai and Aj depend on a common variable. Let use
denote by Di the neighbourhood of i in this graph.

Given an assignment of values to the variable Zj , that is, some γ = (γ1, . . . , γn) where
γj ∈ range(Zj) for each j, we say that Ai is violated by this assignment if Ai is true under this
assignment.

Our aim will be, given that the events (Ai, i ∈ I) satisfy the conditions of the local lemma,
to algorithmically find an assignment of values such that no event Ai is violated. The algorithm
can be stated extremely simply:

• Pick a random assignment for each Zj independently

• while there exists a violated Ai

– Pick a violated Ai (according to some deterministic rule)

– Re-sample the assignments for each Zj ∈ vbl(Ai)

• return the values of the Zj

Where we’re sampling the Zjs according to their distribution. It is clear that if this algorithm
terminates, then we have found our desired requirement. We will show that the expected time
until it terminates is ‘small’.

Theorem 14.1. Let Z1, . . . , Zn and (Ai : i ∈ I) be as above. If there exists real numbers
0 < xi < 1 such that

P(Ai) ≤ xi
∏
j∈Di

(1− xj)

for each i then the algorithm finds an assignment of values to the Zj such that no event Ai is
violated in expected time at most ∑

i∈I

xi
1− xi

Note that, as long as the numbers xi can be bounded away from 1, the runtime is essentially
linear in |I|, the number of events. The bound will come from showing that we expect to
re-sample each vbl(Ai) at most xi

1−xi many times.

Definition. The log of the algorithm is a sequence L = (L(1), L(2), L(3) . . .) where L(t) is the
event Ai such that vbl(Ai) was re-sample in the tth step of the algorithm. We note that the log
may be an infinite sequence.
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A witness tree is a rooted tree T whose vertices are labelled with events Ai, where for a
vertex v ∈ V (T ) we will denote by [v] the i such that v is labelled with Ai, such that if u is
a child of v, then [u] ∈ D[v] ∪ {[v]}. We call T proper if at each vertex the set of labels on its
children is distinct.

Given a log L we can define a witness tree T (t) for each step of the algorithm recursively.
We first label the root with the event L(t). Then, for each i = t − 1, t − 2, . . . we consider the
event L(i) = Ak. If there exists a vertex v in the tree such that [v] ∈ Dk ∪ {k} then we pick one
furthest from the root (breaking ties arbitrarily) and we add a leaf to the tree behind v labelled
Ak. If no such vertex exists then we go on to the next L(i− 1).

The idea behind this process is to build a possible sequence of re-samplings that could have
led to the log file (L(1), . . . , L(t)). We say a witness tree T occurs in L if there is some t such
that T = T (t).

Lemma 14.2. Let T be a witness tree and L the log file of a random execution of the algorithm.

• If T occurs in L then T is proper;

• P(T occurs in L) ≤
∏
v∈T P(A[v]).

Proof. For the first part, let us denote for v ∈ V (T ) the depth of v in the tree by d(v) and let
us write t(v) for the step in the log L at which v was attached to the tree.

We note that if t(u) < t(v) and vbl(A[u]) ∩ vbl(A[u]) 6= ∅, then d(u) > d(v), since we must
have attached u to either the vertex v, or one with strictly smaller depth. Hence, not only is T
proper, but the set of vertices at a specific depth do not share variables.

For the second, we argue via a coupling argument. Given T we can define the evaluation of
T to be the following process. Starting at the leaves we consider the vertices of T in reverse
breadth-first search order and we re-sample in turn the variables in vbl(A[v]) for each vertex.
We say the evaluation succeeds if at each step the event A[v] was violated by the re-sampling of
vbl(A[v]). It is clear that

P(The evaluation succeeds) =
∏

v∈V (T )

P(A[v]).

So, we would like to show that it is less likely that T occurs in L then that the evaluation
succeeds. To do so, let us imagine that we specified in advance, for each variable Zj , an infinite
sequence of independent random variables distributed as Zj and, for both the evaluation and
the algorithm, whenever we want to re-sample Zj we do so by using the next random variable
in the sequence.

This guarantees that, the algorithm and the evaluation will both use the same assignment
for Zj if it has been re-sampled the same number of times in both processes. We will show that
if T occurs in the log, then the evaluation of T will succeed.

So suppose that T occurs in the log as L(t). For every i ≤ t such that L(i) labelled a vertex
of the tree v we re-sampled A[v] because at this stage in the algorithm it was violated. Given
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a Zj ∈ vbl(A[v]) how many times has it been sampled prior to this step? Well, it was sampled
initially at the start of the algorimth, and then once for every i′ < i such that Zj ∈ vbl(L(i′)).
However, for each such i′ there is a vertex of the tree labelled by L(i′) (since in particular it
shares a variable with A[v]), and by our previous observation these all appear at depth > d(v)
in the tree. Hence, the number of times Zj was sampled prior to this was

1 + |{u : d(u) > d(v) and Zj ∈ vbl(A[u])}| := 1 + nj,v.

Furthermore, since A[v] was violated at this point in the algorithm (since we re-sampled
L(i) = A[v]) it follows that if we take the (1 + nj,v)th assignments for each Zj ∈ vbl(A[v]) then
A[v] is violated.

Conversely, consider the point in the evaluation at which we are looking at a vertex v. For
any Zj ∈ vbl(A[v]), we know from before there are no vertices at the same heigh as v which
sample Zj . Hence, since we’re following the breadth-first search order, the number of times that
Zj has been sampled prior to this point in the evaluation is equal to the number of vertices u
such that d(u) > d(v) and Zj ∈ vbl(A[u]), that is, nj,v.

Hence, when we re-sample each the Zj ∈ vbl(A[v]) the assignment we use is the (1 + nj,v)th
assignment for each Zj . However, we know that this assignment violates A[v].

Hence, if T occurs in the log, then the evaluation will succeed. It follows that

P(T occurs in L) ≤ P(The evaluation succeeds) =
∏

v∈V (T )

P(A[v]).

For an event Ai let us define Ni to be the number of times that vbl(Ai) is re-sampled in the
algorithm. Note, given the log L, Ni is precisely the number of times that the witness tree T (t)
is labelled Ai. Hence, if we count over all proper witness trees whose root is labelled Ai we see
that

E(Ni) =
∑

T : root=Ai

P(T occurs in L)

≤
∑

T : root=Ai

∏
v∈V (T )

P(A[v])

≤
∑

T : root=Ai

∏
v∈V (T )

x[v]

∏
j∈D[v]

xj

by the previous Lemma, and then the local lemma.

We’d like to bound this sum, and we do so in quite an ingenious way. We will define a
random process, called a Galton-Watson branching process, which produces a proper witness
tree in some random manner and show that the terms∏

v∈V (T )

x[v]

∏
j∈D[v]

xj

are (up to a fixed constant factor) the probability that we produce the tree T in this fashion.
Hence we can bound the sum of these terms over all such trees by 1, since they represent
probabilities of disjoint events.

113



So, let us define the Galton-Watson branching process. In this process we build a labelled
tree by first picking a root with a label Ai and then, for each j ∈ Di∪{i} we add with probability
xj a child of the root with label Aj . We then do the same for each child of the root according to
the same rule, and so on. This process may die out eventually, or may produce an infinite tree.

Lemma 14.3. Let T be a proper witness tree with root Ai. The probability that T is given by
the above Galton-Watson branching process is

pT =
1− xi
xi

∏
v∈V (T )

x′[v]

where x′i = xi
∏
j∈Di(1− xj).

Proof. For a given v ∈ V (T ) labelled with Ai let us denote by Wv the subset of Di ∪ {i} which
do not occur as children of v in T . Then we have that

pT =
1

xi

∏
v∈V (T )

(
x[v]

∏
w∈Wv

(1− x[w])

)

since pT is the product over all vertices of the probability that that vertex appeared, and the
set of non-children of that vertex didn’t appear, with an extra factor of 1/xi to account for the
fact that the root always appears. To get rid of the dependence on Wv, for every v we add in a
factor of (1−x[u]) for each u ∈ D[v]∪{i}\Wv, which is equivalent to adding a factor of (1−x[v])
for every vertex v and hence

1

xi

∏
v∈V (T )

(
x[v]

∏
w∈Wv

(1− x[w])

)
=

1− xi
xi

∏
v∈V (T )

 x[v]

1− x[v]

∏
w∈D[v]∪{[v]}

(1− x[w])


where again we had to deal with the root separately. However, we can then cancel some terms
to see

1− xi
xi

∏
v∈V (T )

 x[v]

1− x[v]

∏
w∈D[v]∪{[v]}

(1− x[w])

 =
1− xi
xi

∏
v∈V (T )

x[v]

∏
w∈D[v]

(1− x[w])


which by our earlier definition is equal to

1− xi
xi

∏
v∈V (T )

x′[v]

So putting this all together we see that

E(Ni) ≤
∑

T : root=Ai

∏
v∈V (T )

x[v]

∏
j∈D[v]

xj =
∑

T : root=Ai

∏
v∈V (T )

x′[v]

which we can now bound by the previous lemmas as

E(Ni) ≤
xi

1− xi

∑
T : root=Ai

pT ≤
xi

1− xi
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where in the final line we’ve used the the trees T are distinct and so
∑

T pT ≤ 1.

This gives us a randomised algorithm that has a low expected running time, but it can be
changed into a deterministic algorithm using the method of conditional expectations as in the
previous section. Essentially the observation is that we bounded the run time by bounding the
expected number of witness trees occurring in the log. If the probabilities xi are bounded away
from 0, this decreases exponentially quickly as the size of the tree increases, and so there is some
N such that the expected number of witness trees of size > N is less than 1/2.

With a little work one can show that if there is a witness tree of size > N there must be
one whose size in in some finite interval [N, (∆ + 1)N ] where ∆ is the maximum degree of the
dependency graph. At this point we can list all the possible witness trees in this range, and
choose our values for the re-sampling of the variables Zj so as the minimise the expected number
of these trees which will appear in the log. Since by assumption this is < 1/2 at the start, we
can choose assignments for all possible samplings so that this holds (noting that we never have
to re-sample any variable more than N times). This gives us a list of assignment such that no
witness trees of size > N appear in the log, and hence the algorithm must terminate after ≤ N
steps.
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